
Definition. A theory Γ is complete if for every

formula φ, either φ ∈ Γ or ¬φ ∈ Γ.

Lemma. Every consistent theory can be ex-

tended to a complete consistent theory.
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Proof. Let 〈φn : n ∈ ω〉 enumerate all formu-

las. By induction on n ∈ ω build theories Γn
such that

• Γ = Γ0 ⊆ Γ1 ⊆ . . .

• Γn is consistent;

• φn ∈ Γn+1 or ¬φn ∈ Γn+1.
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The induction step is performed by lemma on

”proof by cases”. If both Γn, φn and Γn,¬φn are

inconsistent then so is Γn, which contradicts

the induction hypothesis.

Let ∆ =
⋃
nΓn. This theory is consistent; any

(finite) proof of contradiction from ∆ would

have appeared in some Γn, which is impossible.

3



Definition. A truth assignment V is a model

of Γ if V (φ) = 1 for every φ ∈ Γ.

Lemma. Γ is consistent if and only if it has a

model.

So, the following are equivalent:

• Γ |= φ

• Γ,¬φ has no model;

• Γ,¬φ is inconsistent;

• Γ ` φ.
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Suppose first that Γ has a model V . Argue

that formulas appearing in every formal proof

from Γ have truth value 1 in V ; this prevents

reaching a contradiction from Γ.

Suppose now that Γ is consistent. Extend it

if necessary to a complete consistent theory.

Define a function V by setting V (φ) = 1 if

φ ∈ Γ. It will be enough to show that this is a

truth assignment–then, it is a model for Γ.
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Verification of truth assignment properties at

negation:

• if V (φ) = 1 then we should have V (¬φ) =

0. Indeed, if φ ∈ Γ then ¬φ /∈ Γ by the

consistency of Γ;

• if V (φ) = 0 then we should have V (¬φ) =

1. Indeed, if φ /∈ Γ then ¬φ ∈ Γ by the

completeness of Γ.
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Verification of truth assignment properties at

implication φ→ ψ:

• if V (ψ) = 1 then we should have V (φ →
ψ) = 1. Indeed, the following formulas are

in Γ: ψ, ψ → (φ → ψ), φ → ψ and so

V (φ→ ψ) = 1.

• if V (φ) = 0 then we should have V (φ →
ψ) = 1. The following formulas are in Γ:

¬φ, ¬φ → (¬ψ → ¬φ), ¬ψ → ¬φ, (¬ψ →
¬φ)→ (φ→ ψ), φ→ ψ.

• if V (ψ) = 0 and V (φ) = 1, then we should

have V (φ → ψ) = 0. Indeed φ,¬ψ ∈ Γ and

so φ→ ψ cannot be in Γ by the consistency

of Γ.
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First order logic: language

• logical connectives, parentheses;

• variables (infinitely many of them);

• quantifiers ∀ (for every) and possibly ∃ (there
is);

• equality symbol;

• special functional and relational symbols,
each with assigned arity.

0-ary functional symbols are constants.

Example. ∈ is a special binary relational sym-
bol for ZFC, +, ·,0,1 are special functional sym-
bols of arithmetic

8



First order logic: terms

• every variable is a term;

• if F is a n-ary functional symbol and t0, t1, . . . tn−1

are terms then f(t0, t1, . . . tn−1) is a term;

• all terms are obtained by repeated applica-

tions of the previous items.

Example. (x2+0) ·1 is a term of the language

of arithmetic.
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First order logic: formulas

• if t0, t1 are terms then t0 = t1 is a formula;

• if R is a n-ary relational symbol and t0, t1, . . . tn−1
are terms then R(t0, t1, . . . tn−1) is a for-
mula;

• if φ, ψ are formulas then ¬(φ) and (φ) →
(ψ) are formulas;

• if x is a variable then ∀x(φ) is a formula;

• all formulas are obtained by repeated ap-
plication of previous items.

Example. ∀x¬∀y (x = y → x ∈ z) is a formula
of the language of set theory.
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Free variables, substitution

φ = . . . ∀x(ψ) . . . : ψ is the range of the quanti-

fier, every occurence of x inside ψ is bounded.

An occurence of x in φ which is not bounded is

free. Formula without free variables is a sen-

tence.

Example. ∀x (x ∈ y ∨ x = y): x is not free, y

is.

If t is a term and x is free in φ then φ(t/x) re-

sults from replacing all free occurences of x in

φ by t. Similarly for a sequence of terms ~t and

a sequence of free variables ~x of same length:

φ(~t/~x). The substitution is proper if the vari-

ables in the terms do not become bounded.

Example. x2 + y2 cannot be properly substi-

tuted for z in ∀x (y + x = z).
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First order logic: axioms

• axioms of propositional logic;

• (∀x φ)→ φ(t/x) if the substitution is proper;

• ∀x (φ→ ψ)→ (∀xφ→ ∀x ψ);

• φ→ ∀xφ if x is not free in φ.

Also add universal quantifiers in front of these.

Inference rule: modus ponens.
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First order logic: models

Suppose L = {Ri : i ∈ I, Fj : j ∈ J} is a lan-

guage of first order logic, with arities ni, nj re-

spectively. An L-model is a tuple M = 〈M,RM
i :

i ∈ I, FM
j : j ∈ J〉 where

• M is a nonempty set–universe of the model;

• RM
i ⊂ Mni is a relation for each i ∈ I–

realization of the symbol Ri;

• FM
j : Mnj → M is a function for j ∈ J–

realization of the functional symbol Fj.

Example. 〈N,0,1,+, ·〉 is a model for the lan-

guage of arithmetic.
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Models: plugging in

Let L be a language of first order logic and M

an L-model. If t is an L term with variables

~x, and ~m is a tuple of elements of M , define

tM(~m/~x):

• if t = x for a variable x then tM(m/x) = m;

• if t = Fj(t0, . . . tnj−1) then tM(~m/~x) equals

to FM
j (tM0 (~m/~x), . . . ).
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Models: satisfaction

Let L be a language of first order logic and

M an L-model. For every formula φ(~x) and a

tuple ~m of elements of M , define M |= φ(~m/~x):

• if φ is t0 = t1 then M |= φ(~m/~x) if tM0 (~m/~x) =

tM1 (~m/~x);

• if φ is Ri(t0, t1, . . . ) then M |= φ(~m/~x) if

(tM0 (~m/~x), . . . ) ∈ RM
i ;

• if φ = ¬ψ then M |= φ if M |= ψ fails;

• if φ = ∀yψ then M |= φ(~m/~x) if for every

n ∈M , M |= ψ(~m/~x, n/y).

15



Example. Theory of dense linear order with-

out endpoints.

• language: ≤

• axioms: ∀x, y x ≤ y ∨ y ≤ x, x ≤ y ∧ y ≤ x→
x = y, . . . x < y → ∃z x < z < y, ∃z z < x,

∃z x < z.

• models: the rational numbers.

The theory has only one countable model. It

is complete, and there is an algorithm for iden-

tifying its theorems.
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Example. Theory of groups.

• language: ·, inverse, 1;

• axioms: ∀x∀y∀z x(yz) = x(yz), xx−1 =

x−1x = 1, xy = 1→ x = y−1.

• models: every group is a model of the the-

ory of groups.

Question A. Is there an algorithm identifying

theorems of theory of groups?

Question B. Given a group G, is there an algo-

rithm for deciding which sentences G satisfies?
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Example. Peano Arithmetic.

• language: 0, <, S, +, ·, exponentiation

• axioms: some statements such as ∀x∀y x+

Sy = S(x + y), plus the induction scheme:

if φ(x) is a formula, then φ(0)∧∀x (φ(x)→
φ(Sx)) implies ∀xφ.

• models: 〈N,0, S,+, ·, exponentiation〉.

Question A. Is there an algorithm identifying

theorems of Peano Arithmetic?

Question B. Is there any other model?

Question C. Is Peano Arithmetic complete?
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Completeness theorem for first order logic

For a set Γ of formulas, define Γ ` φ if there

is a formal proof of φ from Γ. For a set Γ of

sentences, define Γ |= φ if every model M |= Γ

also satisfies φ.

Theorem. Γ ` φ if and only if Γ |= φ.

Restatement. A theory is consistent if and

only if it has a model.
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