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Abstract

We present Woodin’s proof that if there exists a measurable Woodin
cardinal δ, then there is a forcing extension satisfying all Σ2

2 sentences φ
such that CH+φ holds in a forcing extension of V by a partial order in Vδ.
We also use some of the techniques from this proof to show that if there
exists a stationary limit of stationary limits of Woodin cardinals, then
in a homogeneous forcing extension there is an elementary embedding
j : V →M with critical point ωV

1 such that M is countably closed in the
forcing extension.

1 Introduction

Woodin’s Σ2
1 absoluteness theorem (see [5]) says that if δ is a measurable Woodin

cardinal and φ is a Σ2
1 sentence which can be forced by a partial order in Vδ, then

φ holds in every forcing extension by a partial order in Vδ which satisfies the
Continuum Hypothesis. A longstanding open question (due to Steel) is whether
this result extends to Σ2

2 sentences and Jensen’s principle 3, that is, is there a
large cardinal concept implying that whenever δ is such a cardinal and φ is a
Σ2

2 sentence such that φ + CH can be forced by a partial order in Vδ, then φ
holds in every forcing extension by a partial order in Vδ which satisfies 3? This
paper presents a theorem of Woodin in this area, saying that if δ is a measurable
Woodin cardinal, then there is a forcing extension satisfying all Σ2

2 sentences φ
such that CH +φ holds in a forcing extension of V by a partial order in Vδ. We
present this result in a slightly extended form, adding predicates for universally
Baire sets of reals.

Before presenting Woodin’s proof, we use some of the techniques from the
proof to show that if there exists a stationary limit of stationary limits of Woodin
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cardinals, then there is a homogeneous partial order which forces that there
is an elementary embedding j : V → M with critical point ωV

1 such that M
is countably closed in the forcing extension. Steel has shown that CH plus
the existence of such a partial order implies that the Axiom of Determinacy
holds in L(R) and stronger models such as L(R#), L(R##), etc. The previous
consistency strength upper bound for the existence of such a partial order was
a superstrong cardinal (see [3] for definitions of the large cardinals used in this
paper, and [5] for background on the stationary tower). This work came after
we learned Woodin’s proof, but since it is simpler we present it first.

1.1 Terminology

We say that two partial orders are forcing-equivalent if the regular open algebras
they generate are isomorphic, and that a partial order P is homogeneous if for
every pair of conditions p, q in P there are conditions p′ ≤ p and q′ ≤ q such
that the restrictions of P below p′ and q′ are forcing-equivalent. If P is a
homogeneous partial order, then the theory (with parameters from the ground
model) of every P -extension is the same, and thus computable in the ground
model. We make key use of a standard forcing fact due to McAloon (Lemma
26.7 of [2] and Theorem A.0.7 of [5]), where for any cardinal γ and any set X,
Coll(γ, X) is the partial order consisting of partial functions from γ to X of
cardinality less than γ, ordered by inclusion.

Theorem 1.1. Any separative partial order P such that forcing with P makes
P countable is forcing-equivalent to Coll(ω, P ).

2 Slow clubs

Suppose that M is a model of ZF, and let δ be an ordinal in M . An M -slow
club through δ is a club D ⊂ δ with the property that for each limit element β
of D, D intersects every club subset of β in M . When β has cofinality ω in the
model containing D, the intersection requirement in the notion of slow club is
nontrivial. Given a set (or class) of ordinals S, we say that a limit ordinal γ is
1-S-Mahlo if S ∩ γ is a stationary subset of γ, and, for any positive n ∈ ω, γ is
(n + 1)-S-Mahlo if the set of n-S-Mahlo ordinals in S below γ is stationary. If
D is an M -slow club contained in a set S in M , then every limit point of D is
1-S-Mahlo in M . For any stationary set S consisting of limit ordinals, the set of
γ ∈ S which are not 1-S-Mahlo is also stationary, since for any club C ⊂ sup(S)
consisting of limit ordinals, the first limit point of C in S is such a γ. This puts
some limitations on methods for adding slow clubs.

2.1 Definition. Suppose that δ is a limit ordinal and S is a subset of δ. We let
SC(δ, S) be the partial order consisting of triples (c, e, f) such that

• c is a finite subset of S;

• e is a finite set of closed, bounded intervals of δ disjoint from c;
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• f is a regressive function whose domain is the set of α ∈ c which are not
1-S-Mahlo;

• (f(α), α) ∩ c = ∅ for each α ∈ dom(f).

Given (c, e, f), (b, d, g) in SC(δ, S), (c, e, f) ≤ (b, d, g) if b ⊂ c, d ⊂ e and g ⊂ f .

The partial order SC(δ, S) has cardinality δ. Fact 2.2 below shows that if S
is cofinal in δ and G ⊂ SC(δ, S) is a V -generic filter, then

CG =
⋃
{c | (c, e, f) ∈ G}

is an unbounded subset of δ (we call CG the generic club added by SC(δ, S)).
Fact 2.3 shows that CG is closed. Together they show that CG is a V -slow
club subset of δ when S is cofinal in δ; moreover, they show that for each limit
element β of CG, CG ∩ β intersects every cofinal subset of β ∩ S in the ground
model. By Fact 2.2 and the definition of SC(δ, S), for each γ ∈ CG, γ is a limit
point of CG if and only if γ is 1-S-Mahlo in V .

2.2 Fact. Let (c, e, f) be a condition in SC(δ, S) and let γ be any element of

S \ (
⋃

e ∪
⋃
{(f(α), α) : α ∈ dom(f)}).

If γ is 1-S-Mahlo, then (c ∪ {γ}, e, f) ∈ SC(δ, S) and (c ∪ {γ}, e, f) ≤ (c, e, f).
If γ is not 1-S-Mahlo, then (c ∪ {γ}, e, f ∪ {(γ, max(c ∩ γ))}) ∈ SC(δ, S) and

(c ∪ {γ}, e, f ∪ {(γ, max(c ∩ γ))}) ≤ (c, e, f).

2.3 Fact. If (c, e, f) is a condition in SC(δ, S) and γ ∈ δ \ c is a limit ordinal,
then

(c, e ∪ {[max(c ∩ γ) + 1, γ]}, f) ≤ (c, e, f).

Fact 2.4 below shows that the forcing SC(δ, S) factors at each 1-S-Mahlo
ordinal in S below δ. We will use this fact to demonstrate the homogeneity of
various forcings considered in this paper. It also shows that if δ is a regular
cardinal and 2-S-Mahlo, then SC(δ, S) preserves the regularity of δ, since, in
this case, for every dense D ⊂ SC(δ, S) there will be club many γ < δ such that
D ∩ SC(γ, S ∩ γ) is dense in SC(γ, S ∩ γ).

2.4 Fact. For any condition (c, e, f) ∈ SC(δ, S), and any 1-S-Mahlo α ∈ c, the
partial order SC(δ, S) below (c, e, f) is isomorphic to the partial order

SC(α, S ∩ α)× SC(δ, S \ (α + 1))

below the condition

((c ∩ α, {I ∈ e | I ⊂ α}, f ∩ αα), (c \ (α + 1), {I ∈ e | I ∩ α = ∅}, f \ αα)).
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Lemma 2.5 below shows that when δ is a regular cardinal and 2-S-Mahlo,
every set of ordinals of cardinality less than δ in the SC(δ, S)-extension is added
by an initial segment of the partial order. It follows that forcing with SC(δ, S)
makes CH hold when δ is strongly inaccessible and 2-S-Mahlo, since Lemma 2.6
implies that δ is the ω1 of such an extension.

Lemma 2.5. Suppose that δ is a regular cardinal, S ⊂ δ and δ is 2-S-Mahlo.
Let G ⊂ SC(δ, S) be V -generic. Then for every element x of [Ord]<δ in V [G],
there exists a limit member γ of CG such that G∩SC(γ, S ∩γ) is V -generic for
SC(γ, S ∩ γ), and x ∈ V [G ∩ SC(γ, S ∩ γ)].

Proof. Fix ξ < δ and let τα (α < ξ) be SC(δ, S)-names for ordinals. For each
α < ξ, let Tα be the set of pairs (p, β) such that p ∈ SC(δ, S) and p
τα = β̌.
Let q = (c, e, f) be a condition in SC(δ, S). Let θ be a regular cardinal greater
than 2δ and let Z be an elementary submodel of H(θ) such that

{δ, S, q, 〈Tα : α < ξ〉} ∈ Z,

Z ∩δ ∈ S and Z ∩δ is 1-S-Mahlo. Let γ = Z ∩δ. Then (c∪{γ}, e, f) ≤ (c, e, f),
and, by Lemma 2.4, (c∪{γ}, e, f) forces that the restriction of the generic filter
to SC(γ, S ∩ γ) will be generic. Furthermore, for each α < ξ,

{p ∈ SC(γ, S ∩ γ) | ∃β (β̌, p) ∈ Tα}

is predense in SC(γ, S ∩ γ) below (c, e, f). The lemma then follows by Fact
2.4.

It follows from Lemma 2.5 that if δ is a regular cardinal and 2-S-Mahlo, then
δ has uncountable cofinality in the SC(δ, S) extension. The following lemma
is a sort of converse. Applying Theorem 1.1, it also shows that in many cases
SC(γ, S) is forcing-equivalent to Coll(ω, γ). It follows that SC(δ, S) makes δ
countable if S consists of regular cardinals and δ is a limit of 1-S-Mahlo ordinals,
but not 2-S-Mahlo.

Lemma 2.6. Let γ be an ordinal, let S be a cofinal subset of γ, and suppose
that γ is not a limit of 1-S-Mahlo members of S. Then forcing with SC(γ, S)
makes cf(γ)V countable.

Proof. Let β be the supremum of the 1-S-Mahlo members of S below δ (let
β = 0 if this set is empty), and let {Tα : α < cof(γ)} be a partition of S into
cofinal sets. The generic club given by SC(γ, S) will have ordertype ω in the
interval (β, γ), and will intersect each Tα, inducing a surjection from ω onto
cof(γ).

The following lemma gives a homogeneity property of SC(δ, S) for suitable
δ and S.

Lemma 2.7. Suppose that δ is a cardinal, and that S is a set of regular cardinals
below δ such that δ is a limit of 1-S-Mahlo members of S. Let p and q be
conditions in SC(δ, S). Then there exist conditions p′ ≤ p and q′ ≤ q such that
the restrictions of SC(δ, S) below p′ and q′ are forcing-equivalent.
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Proof. Let p = (b, d, g) and q = (c, e, f). Let γ ∈ S be 1-S-Mahlo but not a limit
of 1-S-Mahlo ordinals, such that γ is larger than every member of b∪c∪

⋃
d∪

⋃
e.

Let p′ = (b ∪ {γ}, d, g) and let q′ = (c ∪ {γ}, e, f). Then SC(δ, S) below the
condition p′ is isomorphic to

SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1))

below the condition
((b, d, g), (∅, ∅, ∅))

and SC(δ, S) below the condition q′ is isomorphic to

SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1))

below the condition
((c, e, f), (∅, ∅, ∅)).

By Lemma 2.6, SC(γ, S ∩ γ) below (b, d, g) and SC(γ, S ∩ γ) below (c, e, f) are
both forcing-equivalent to Coll(ω, γ).

3 Slow clubs and the stationary tower

Given n ∈ ω and a cardinal δ, we say that δ is n-Mahlo-Woodin if it is n-W -
Mahlo, where W denotes the class of Woodin cardinals. Recall that a stationary
limit of regular cardinals is regular, so a stationary limit of Woodin cardinals
is Woodin. The hypotheses of Theorem 3.1 below imply that ωV

1 is a 2-Mahlo-
Woodin cardinal in M .

Our main application of slow clubs is the construction of QM
<δ-generic filters

for suitable inner models M .

Theorem 3.1. Suppose that M is a model of ZFC and D ⊂ ωV
1 is an M -slow

club contained in the Woodin cardinals of M . Then there exists an M -generic
filter for QM

<ωV
1

containing any given condition.

Before beginning the proof, we note (see Lemma 2.7.14 of [5]) that if γ is a
Woodin cardinal then there is a stationary set (which we will call aγ) consisting
of countable subsets of Vγ+1 such that for every strongly inaccessible cardinal
η > γ, the inclusion map regularly embeds Q<γ into the restriction of Q<η to
conditions b ≤ aγ . Indeed, for such η and γ, aγ is in the generic filter for Q<η if
and only if the restriction of the generic filter to Q<γ is generic (Lemma 2.7.16
of [5]).

Proof of Theorem 3.1. Let p be a condition in QM
<ωV

1
. Removing an initial seg-

ment of D if necessary, we may assume that p ∈ QM
<γ0

, where γ0 is the least
element of D. For each γ ∈ D, let Gγ be the set of g such that

• g is an M -generic filter for QM
<γ containing p;

• for all η ∈ D ∩ γ, g ∩ V M
η is M -generic for QM

<η.
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Since ωV
1 is a strongly inaccessible cardinal in M , Gγ0 is nonempty.

Let T be the tree on
⋃

γ∈D Gγ ordered by: g ≥ h whenever g ∈ Gγ and
h ∈ Gη, for some γ, η in D, and g ∩ V M

η = h. The fact mentioned before the
proof (and the fact that ωV

1 is strongly inaccessible in M) implies that every
member of G has proper extensions in T . The theorem follows from the fact that
T is countably closed, and the fact that the union of each uncountable branch
through T is an M -generic filter for QM

<ωV
1

.
To see that T is countably closed, note that if γ is a limit point of D, then

each predense subset of QM
<γ in M has predense intersection with QM

<η for club
many η < γ, relative to the set of strongly inaccessible cardinals below γ, and
thus with QM

<η for some η ∈ γ ∩D. It follows that if g is a subset of QM
<γ such

that g∩QM
<η is an M -generic filter for all η ∈ γ∩D, then g is also an M -generic

filter. Similarly, each predense subset of QM
<ωV

1
in M has predense intersection

with QM
<η for (relative) club many η < ωV

1 , and thus with QM
<η for some η ∈ D.

It follows that if G is a subset of QM
<ωV

1
such that G∩QM

<η is an M -generic filter
for all η ∈ D, then G is also an M -generic filter.

It follows from Theorem 3.1 that Q<δ regularly embeds into any forcing
which collapses δ to be ω1 and adds a V -slow club through the Woodin cardinals
below δ. The results of the previous section show that that SC(δ,W ) is such a
forcing when W is the set of Woodin cardinals below a 2-Mahlo-Woodin cardinal
δ.

A classical forcing fact (Corollary A.0.6 of [5]) says that if M is a model
of ZFC, δ is a limit ordinal of M and x, y are sets such that {x, y} exists in
a generic extension of M by a partial order in V M

δ , then x exists in a generic
extension of M [y] by a partial order in V

M [y]
δ . Recall that whenever δ is a

strongly inaccessible cardinal, every forcing of cardinality less than δ regularly
embeds into Q<δ and the image model of the embedding contains every real of
the forcing extension (see Theorems 2.7.7 and 2.7.8 of [5]). These facts allow
a modification of the proof of Theorem 3.1 giving the following theorem. We
use the notion of nice names from [4] (see page 208), simply to restrict to a
sufficiently large set-sized collection of names.

Theorem 3.2. Let δ be a 2-Mahlo-Woodin cardinal, let W denote the Woodin
cardinals of V below δ, and let G ⊂ SC(δ,W ) be a V -generic filter. Then there
exists in V [G] a V -generic filter H ⊂ QV

<δ, containing any given condition, such
that V [H] contains the reals of V [G].

Proof. Let p be a condition in QV
<δ and let γ0 be the least Woodin cardinal γ

with p ∈ Q<γ . Let W 0
1 be the set of 1-Woodin-Mahlo cardinals in (γ0, δ) which

are not limits of 1-Woodin-Mahlo cardinals. Let 〈τξ : ξ < δ〉 be a listing in V
of all nice SC(γ, W ∩ γ)-names for reals, for all 1-Woodin-Mahlo γ < δ.

For each α < β in W 0
1 , let Nα,β be the set of nice SC(β, W ∩ β)-names σ

for which it is forced that if α and β are in CG, then the realization of σ is a
V -generic filter h ⊂ Q<α such that
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• h ∩Q<γ0 is a V -generic filter containing p.

• h ∩Q<γ is V -generic for all γ ∈ (CG ∩ α) \ γ0.

Fix (suppressed) wellorders of the sets Nα,β .
Let C∗ be the set of limit points of CG. Working in V [G], recursively define

a sequence 〈hα : α ∈ C∗ \ (γ0 + 1)〉 such that

• hmin(C∗\(γ0+1)) = ∅;

• if γ is a limit element of C∗ \ (γ0 +1), α is the least element of C∗ greater
than γ and β is the least element of C∗ greater than α, then hα is the
realization by G of the least element of Nα,β whose realization h extends
hγ and has the realization of τξ in V [h], where ξ < δ is least such that

– τξ is an SC(η, W ∩ η)-name for a real, for some η ∈ C∗ ∩ (γ +1), and

– the realization of τξ by hγ is not in V [hγ ],

if such an ξ exists, otherwise hα is the realization of the least element of
Nα,β whose realization h extends hγ ;

• if γ is not a limit element of C∗ \ (γ0 + 1), α is the least element of C∗

greater than γ and β is the least element of C∗ greater than α, then hα is
the realization of the least element of Nα,β which extends hγ ;

• if α is a limit element of C∗ \ (γ0 + 1), then hα =
⋃

β∈α∩C∗ hβ .

It follows from this construction that whenever γ is a limit element of the set
C∗\(γ0+1), hγ ∈ V [G∩SC(γ, W ∩γ)]. Let H =

⋃
{hα : α ∈ C∗\(γ0+1)}. Let

E be the set of ξ < δ such that τξ is an SC(η, W ∩ η)-name, for some ξ ∈ C∗.
By Lemma 2.5, every real in V [G] is the realization of τξ for some ξ ∈ E. If
ξ were the least ζ ∈ E such that the realization of τζ were not in V [H], then,
since ξ is countable in V [H] and δ is uncountable, there would be some limit
element γ of C∗ \ (γ0 + 1) such that ξ is the least ζ < δ such that

• τζ is an SC(η, W ∩ η)-name for a real, for some η ∈ C∗ ∩ (γ + 1), and

• the realization of τζ by hγ is not in V [hγ ].

Then the realization of τξ is in V [hα] by the construction above, where α is the
least element of C∗ above γ.

Theorem 3.3 below is the main original result of this paper.

Theorem 3.3. Suppose that δ is a 2-Mahlo-Woodin cardinal, and let W de-
note the set of Woodin cardinals below δ. Then the partial order SC(δ,W ) is
homogeneous, and in the extension by this partial order there is an elementary
embedding from V into a model M which is closed under ω-sequences in the
forcing extension.
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Proof. The partial order SC(δ,W ) is homogeneous by Lemma 2.7. By Lemma
2.5, every countable set of ordinals in any forcing extension of V by SC(δ,W ) is
in a model of the form V [x] for some real in the extension. By Lemma 3.2, in any
SC(δ,W ) extension there is a V -generic filter H ⊂ QV

<δ such that V [H] contains
all the reals of the SC(δ,W )-extension, and therefore all initial segments of the
SC(δ,W )-generic filter. Then the image model M of the embedding induced
by H is ω-closed in V [H], which is ω-closed in the SC(δ,W )-extension, which
means that M is ω-closed in this extension.

4 Σ2
2 maximality

Given a strong limit cardinal δ of a ZFC model M , we take a δ-symmetric
extension of M to be the least model M(R∗) of ZF containing M and a set of
reals R∗ with the properties that

• M(R∗) ∩ R = R∗;

• every member of R∗ is generic over M by a forcing in V M
δ ;

• the supremum of {ωL[x]
1 : x ∈ R∗} is δ.

We refer the reader to [2, 5] for more general definitions of symmetric extension.
We typically denote a symmetric extension of a model M by M(R∗), where R∗

is understood to be the reals of the extension. We note the following facts about
δ-symmetric extensions, for a strong limit cardinal δ: (1) any two δ-symmetric
extensions of M are elementarily equivalent (even with parameters from M);
(2) if M(R∗) is a δ-symmetric extension of M and P is a partial order in V M

δ

then M(R∗) is a δ-symmetric extension of an extension of M by P .
The following is Theorem 3.1.6 in [5].

Theorem 4.1. If δ is a Woodin limit of Woodin cardinals and G ⊂ Q<δ is a
V -generic filter, then V (RV [G]) is a δ-symmetric extension of V .

Whenever κ is a strongly inaccessible cardinal and G is V -generic for the
partial order Coll(ω, <δ), V (RV [G]) is a δ-symmetric extension of V . Fact 2.4
and Lemma 2.6 show that the same is true for SC(δ, S), when δ is a strongly
inaccessible and 2-S-Mahlo, and S is a set of regular cardinals.

Given a model M of ZF, an ordinal δ ∈ M and S ⊂ δ in M , let SL(M, δ, S)
be the partial order consisting of all M -generic filters for partial orders of the
form SC(γ, S∩γ)M , where γ ∈ S is 1-S-Mahlo in M , ordered by end-extension.
When g ∈ SL(M, δ, S) is an M -generic filter for SC(γ, S ∩ γ)M , we say that
the length of g is γ. Since filters for SC(δ, S) are uniquely determined by their
corresponding club sets, we somtimes identify a condition g in SL(M, δ, S) with
the set Cg∪{sup(Cg)}; so each condition can be identified with a closed, bounded
subset of S.

The partial order SL(M, δ, S) is not ω-closed. However, it is a tree order-
ing, so if the set of 1-S-Mahlo γ ∈ S is cofinal in δ and δ is the ω1 of some
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SL(M, δ, S)-extension, then there are no new countable sequences of ordinals in
this extension.

We let Add(1, δ) denote the forcing which adds a subset of δ by initial seg-
ments. The following lemma follows from Theorem 1.1, Fact 2.4, Lemmas 2.6
and 2.5, and genericity.

Lemma 4.2. Suppose that

• δ is a regular uncountable cardinal;

• S is a set of regular cardinals below δ and δ is 2-S-Mahlo;

• V (R∗) is a δ-symmetric extension of V ;

Then

• if D is a V (R∗)-generic club for SL(V, δ, S), then

– D is V -generic for SC(δ, S),

– R∗ ⊂ V [D],

– V (R∗)[D] = V [D];

• if (D,B) is V (R∗)-generic for SL(V, δ, S)×Add(1, δ), then

– B is V [D]-generic for Add(1, δ),

– V (R∗)[D][B] = V [D][B],

– V [D][B] is a generic extension of V by the partial order

SC(δ, S) ∗Add(1, δ).

• forcing with SL(V, δ, S) over V (R∗) does not collapse δ.

Proof. To see that D is V -generic for SC(δ, S), let E be a dense subset of
SC(δ, S) in V and let g be a condition in SL(V, δ, S). Let γ be the length of g.
By Fact 2.4, SC(δ, S) below ({γ}, ∅, ∅) is isomorphic to

SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1)),

and we can let E′ be the image of E (below ({γ}, ∅, ∅)) in this product. Since g
is a generic filter for SC(γ, S∩γ), there is a condition (p, q) in E′ with p ∈ g. Let
η > γ be 1-S-Mahlo in V with q ∈ SC(η, S ∩ (γ, η)), and let h be a V [g]-generic
filter for SC(η, S ∩ (γ, η)) with q ∈ h. Then the preimage of (g, h) in SC(δ, S)
is a condition in SL(V, δ, S) extending g meeting E. By genericity, then, D is
V -generic for SC(V, δ, S).

To see that R∗ ⊂ V [D], fix x ∈ R∗ and let g be a condition in SL(V, δ, S).
Let γ be the length of g. By Fact 2.4, SC(δ, S) below ({γ}, ∅, ∅) is isomorphic
to SC(γ, S ∩ γ)× SC(δ, S \ (γ + 1)). Let η < δ be the least 1-S-Mahlo cardinal
in S such that the pair {g, x} is V -generic for a partial order of cardinality η.
Let h be a V [g]-generic filter for SC(η, S ∩ (γ, η)) with x ∈ V [g][h]. Then the

9



preimage of (g, h) in SC(δ, S) is a condition g′ in SL(V, δ, S) extending g with
x ∈ V [g′]. By genericity, then, R∗ ⊂ V [D].

To see that B is V [D]-generic for Add(1, δ), let (g, a) be a condition in
SL(V, δ, S) × Add(1, δ), and let τ be an SC(δ, S)-name for a dense subset of
Add(1, δ). By the V -genericity of D, and Lemma 2.5, whenever D∗ is V (R∗)-
generic for SL(V, δ, S), every real in V [D∗] is in V [D∗ ∩ η] for some η < δ.
Therefore, there is a condition g′ below g in SL(V, δ, S) such that a ∈ V [g′] and
such that some extension b of a in V [g′] is forced by some condition in g′ to be
in the realization of τ . Then (g′, b) is below (g, a), and the V [D]-genericity of
B follows by the V (R∗)-genericity of (D,B).

By Lemma 2.5 and the V -genericity of D for SC(δ, S), forcing with SL(V, δ, S)
over V (R∗) does not collapse δ. This in turn implies that V (R∗)[D] = V [D],
and that forcing with SL(V, δ, S)×Add(1, δ) over V (R∗) does not collapse δ.

The following lemma uses Corollary 26.10 of [2], which (for our purposes)
says that if γ is a regular cardinal, G ⊂ Coll(ω, γ) is a V -generic filter, and
x ∈ V [G] is subset of V such that γ is uncountable in V [x], then there exists a
V [x]-generic filter H ⊂ Coll(ω, γ) such that V [G] = V [x][H].

Lemma 4.3. Suppose that

• M is a model of ZFC;

• δ ≤ ωV
1 is an ordinal;

• P(α)M is countable for each α < δ;

• S ⊂ δ is a set of regular cardinals in M ;

• δ is a limit of 1-S-Mahlo ordinals in M .

Then SL(M, δ, S) is homogeneous.

Proof. Let p, q be conditions in SL(M, δ, S) of length γp and γq, respectively.
Let γ be the least 1-S-Mahlo cardinal of M above both γp and γq such that the
pair {p, q} is M -generic for a partial order in V M

γ . Since SC(γ, S \ (γp + 1))
and SC(γ, S \ (γq + 1)) are both forcing-equivalent to Coll(ω, γ), there exist by
Corollary 26.10 of [2] and Lemma 2.4 conditions p′ ≤ p and q′ ≤ q of length γ
such that M [p′] = M [q′]. Then the restrictions of the partial order SL(M, δ, S)
below the conditions p′ and q′ are isomorphic.

Lemma 4.4 is a variation of Lemma 4.3. Since SL(V, δ,W ) × Add(1, δ)
is homogeneous (in the context of Lemma 4.3), Lemma 4.4 shows that the
SL(V, δ,W ) × Add(1, δ)-extension of V (R∗) is elementarily equivalent to the
same extension defined over any forcing extension of V by a partial order in Vδ.
An analogous version of the lemma for the partial order SC(δ,W ) ∗ Add(1, δ)
follows from the existence of a 2-Mahlo-Woodin cardinal. We will apply the
lemma in an even stronger context.
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Lemma 4.4. Suppose that

• δ is a strongly inaccessible limit of 1-Mahlo-Woodin cardinals;

• V (R∗) is a δ-symmetric extension of V ;

• P , Q are partial orders in Vδ;

• g ⊂ P and h ⊂ Q are V -generic filters in V (R∗);

• Wg is the set of Woodin cardinals of V [g] below δ;

• Wh is the set of Woodin cardinals of V [h] below δ;

• p is a condition in SL(V [g], δ, Wg);

• q is a condition in SL(V [h], δ, Wh).

Then there exist conditions p′ ≤ p and q′ ≤ q such that SL(V [g], δ, Wg) below
p′ and SL(V [h], δ, Wh) below q′ are isomorphic.

Proof. Let γp and γq be the respective lengths of p and q. Let γ be the least
1-S-Mahlo cardinal of V above both γp and γq such that the set {p, q, g, h}
is V -generic for a partial order in Vγ . Since SC(γ, Wg \ (γp + 1))V [g] and
SC(γ, W [h] \ (γq + 1))V [h] are both forcing-equivalent to Coll(ω, γ) in their
respective models, there exist by Corollary 26.10 of [2] and Lemma 2.4 condi-
tions p′ ≤ p in SL(V [g], δ, Wg) and q′ ≤ q in SL(V [h], δ, Wh) of length γ such
that V [g][p′] = V [h][q′]. Then since Wg\γ = Wh\γ, p′ and q′ are as desired.

If V (R∗) is a δ-symmetric extension of V and B is V (R∗)-generic for Add(1, δ),
then, considering consecutive ω-sequences from δ and membership (or not) in
B, B lists all the members of R∗, so V (R∗)[B] and V [B] are the same model.
We fix a recursive coding of elements of H(ω1) by subsets of ω, and consider
elements of H(ω1) coded by consecutive ω-sequences from B in this fashion.

Suppose that δ is a limit of Woodin cardinals, and let W denote the set of
Woodin cardinals below δ. Given a condition (d, b) in SL(V, δ,W )×Add(1, δ), we
define a set g(d,b) and an ordinal η(d,b) such that either g(d,b) = ∅ and η(d,b) = 0
or g(d,b) is a V -generic filter g(d,b) in QV

<η(d,b)
and η(d,b) ∈ d. If d is empty, so

is g(d,b) (so η(d,b) = 0). Otherwise, η(d,b) and g(d,b) are defined as follows. Let
g0 = 0 and β0 = 0, and, for each limit element γ of d, if gη and βη are defined
for each η ∈ d ∩ γ, then let

gγ =
⋃
{gη : η ∈ d ∩ γ}

and βγ = sup{βη : η < γ}. If gγ is defined for each η ∈ d, then g(d,b) = gmax(d)

and η(d,b) = max(d). For each γ ∈ (d ∪ {0}) \ sup(d), if gγ and βγ are defined,
let γ+ denote the least member of d above γ. Then we choose gγ+ and βγ+ (or
g(d,b)) in the following way.
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• If some consecutive ω-sequence from b above γ∪βγ codes a V -generic filter
g ⊂ QV

<γ+ such that g ∩ QV
<γ = gγ , then let gγ+ be the first filter of this

type coded by a consecutive ω-sequence from b above γ ∪ βγ , and let βγ+

be supremum of the indices of this ω-sequence.

• If there is no such consecutive ω-sequence from b above γ ∪ βγ , then let
g(d,b) = gγ and η(d,b) = γ, and gγ+ and βγ+ are undefined.

If (d′, b′) ≤ (d, b) are conditions in SL(V, δ,W )×Add(1, δ), then g(d,b) ⊂ g(d′,b′)

(and indeed the contruction just given for (d, b) is an initial segment of the
construction for (d′, b′)). The argument given in the proof of Theorem 3.1,
using the fact that d is an V -slow club, shows that g(d,b) is either ∅ or an V -
generic filter for QV

<η(d,b)
. We say that (d, b) is complete if either (d, b) is the

empty condition or
η(d,b) = sup(b) = sup(d)

and every real coded by a consecutive ω-sequence from b is in V [g(d,b)].
The following lemma shows how to extend (d, b) in order to extend g(d,b).

Lemma 4.5. Suppose that

• M is a model of ZFC;

• δ is a 2-Mahlo-Woodin cardinal in M ;

• R∗ is the set of reals of V ;

• M(R∗) is a δ-symmetric extension of M ;

• W is the set of Woodin cardinals of M below δ;

• (d, b) is a condition in SL(M, δ,W )×Add(1, δ);

• g is an M -generic filter for QM
< sup(d) extending g(d,b) such that aγ ∈ g for

every γ ∈ d \ η(d,b).

Then there exists a b′ extending b such that g(d,b′) = g.

Proof. Clearly, if g(d,b) = g, we can let b′ = b. Otherwise, η(d,b) ∈ d \ {sup(d)}
and there is no consecutive ω-sequence from b above η(d,b) ∪ {β(d,b)} coding an
M -generic filter g ⊂ QM

<γ0
such that g ∩QM

<η(d,b)
= gη(d,b) , where γ0 is the least

element of d above η(d,b). Let the first ω-sequence of b′ extending b above η(d,b)

be a real in M [g ∩ QM
<γ1

] coding g ∩ QM
<γ0

, where γ1 is the least element of d
above γ0. Then βγ0 = sup(b′).

For each γ ≥ γ0 in d, let the first ω-sequence of b′ above γ ∪ βγ be a real in
M [g ∩ QM

<γ2
] coding g ∩ QM

<γ1
, where γ1 is the least member of d above γ, and

γ2 is the least member of d above γ1. Then βγ1 = (γ ∪ βγ) + ω.
For limit members γ of d above γ0, βγ is the supremum of {βη : η < γ}.
Let these be the only elements of b′ \ b.

In the context we will be working in, the complete conditions are dense.
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Lemma 4.6. Suppose that δ is a 2-Mahlo-Woodin cardinal in a model M of
ZFC, and M(R∗) is a δ-symmetric extension of M , where R∗ is the set of reals
in V . Let (d, b) be a condition in SL(M, δ,W )× Add(1, δ), where W is the set
of Woodin cardinals of M below δ. Then there is complete condition (d′, b′) in
SL(M, δ,W )×Add(1, δ) below (d, b).

Proof. By Lemma 4.5, we may assume that η(d,b) = max(d). The set of reals
coded by an ω-sequence from b is countable, so there is a real x constructing
all such reals. Let 〈γi : i ≤ ω〉 be a continuous, increasing sequence of Woodin
cardinals of M above max(d) ∪ sup(b) such that

1. γ0 is the least Woodin cardinal γ > max(d) ∪ sup(b) such that

• a ∈ QM
<γ ;

• the pair {g(d,b), x} exists in a generic extension of M by a partial
order of cardinality less than γ;

2. γω is the least 1-Mahlo-Woodin cardinal of M greater than γ0;

3. d ∪ {γi : i < ω} is M -generic for SC(γω,W ∩ γω);

Then let d′ = d ∪ {γi : i < ω} and let b′ be a subset of γω with the property
that

• b′ end-extends b;

• the first ω-sequence of b′ above max(d)∪ sup(b) is a real y0 coding an M -
generic filter g0 ⊂ Q<γ0 such that g0 ∩ V M

η(d,b)
= g(d,b), a ∈ g0, x ∈ M [g0],

and y0 exists in a generic extension of M by a partial order in V M
γ1

;

• for all i ∈ ω, the first ω-sequence of b′ above γi is a real yi+1 coding an
M -generic filter gi+1 ⊂ Q<γi+1 such that gi+1 ∩ V M

γi
= gi, yi ∈ M [gi+1],

and yi+1 exists in a generic extension of M by a partial order in V M
γi+2

;

• all elements of b′ \ b are of the the form (max(d) ∪ sup(b)) + n or γi + n,
for some i, n in ω.

Then (d′, b′) is the desired condition.

Lemma 4.7. Suppose that

• M is a model of ZFC;

• δ is a 2-Mahlo-Woodin cardinal in M ;

• R∗ is the set of reals in V ;

• M(R∗) is a δ-symmetric extension of M ;

• W is the set of Woodin cardinals of M below δ;

• (d, b) is a complete condition in SL(M, δ,W )×Add(1, δ),
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• a is a condition in QM
<δ below aη(d,b) .

• ḋ and ḃ are ((Q<δ�a)/Q<η(d,b))
M [g(d,b)]-names such that (ḋ, ḃ) is forced to

be a complete condition in SL(M, δ,W )×Add(1, δ) such that g(ḋ,ḃ) = g(d,b);

Then there exist continuous, increasing sequences

d∗ = 〈γi : i ≤ ω〉

and
d′ = 〈γ′i : i ≤ ω〉,

and sets b∗, b′ and g such that

• γ0 = γ′0 is a Woodin cardinal of M greater than η(d,b) with a ∈ QM
<γ0

;

• γω = γ′ω is the least 1-Mahlo-Woodin cardinal of M above γ1;

• g is an M -generic filter contained in Q<γ0 extending g(d,b) with a in g;

• g decides all of ḋ and ḃ;

• d ∪ d∗ is M -generic for SC(γω,W ∩ γω);

• ḋg ∪ d′ is M -generic for SC(γω,W ∩ γω);

• M [d ∪ d∗] = M [ḋg ∪ d∗];

• (d∪d∗, b∗) is a complete condition in SL(M, δ,W )×Add(1, δ) below (d, b);

• (ḋg ∪ d′, b′) is a complete condition in SL(M, δ,W ) × Add(1, δ) below
(ḋg, ḃg);

• g(d∪d∗,b∗) = g(ḋg∪d′,b′) extends g.

Proof. Let γ0 be the least Woodin cardinal γ of M such that

• γ > η(d,b);

• a ∈ QM
<γ ;

• the antichains deciding ḋ and ḃ are all predense in QM
<γ

Let g be an M -generic filter for QM
<γ0

such that

• a ∈ g;

• g ∩QM
<η(d,b)

= g(d,b);

Let γ1 be the least γ > γ0 which is a Woodin cardinal in M such that the pair
{d, ḋg} is M -generic for a partial order in V M

γ . Let γω be the least 1-Mahlo-
Woodin cardinal of M above γ1. As in the proof of Lemma 4.3, there exist
sequences d∗ = 〈γi : i < ω〉 and d′ = 〈γ′i : i < ω〉 with supremum γω such that
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• d ∪ d∗ is M -generic for SC(γω,W ∩ γω);

• ḋg ∪ d′ is M -generic for SC(γω,W ∩ γω);

• M [d ∪ d∗] = M [ḋg ∪ d′].

Let g∗ be a generic filter for QM
<γω

extending g such that aγ ∈ g∗ for every
γ ∈ d∗ ∪ d′. Then by Lemma 4.5, there exist b and b′ such that

g(d∪d∗,b∗) = g(ḋg∪d′,b′) = g∗,

as desired.

If (D,B) is a filter contained in SL(V, δ,W )×Add(1, δ), we let

g(D,B) =
⋃
{g(d,b) | (d, b) ∈ (D,B)}.

Lemma 4.8 follows from Lemmas 4.2, 4.5 and 4.6.

Lemma 4.8. Suppose that δ is (in V ) a 2-Mahlo-Woodin cardinal. Let V (R∗)
be a δ-symmetric extension of V and let (D,B) be V (R∗)-generic for

SL(V, δ,W )×Add(1, δ).

Then δ = ω
V [D][B]
1 , g(D,B) is a V -generic filter for QV

<δ and RV [g(D,B)] = R∗.

The following is the main technical lemma for the proof of Theorem 4.10.

Lemma 4.9. Suppose that

• δ is a 2-Mahlo-Woodin cardinal in V ;

• G ⊂ Q<δ is a V -generic filter;

• (d, b) is a complete condition in SL(V, δ,W )×Add(1, δ);

• G ∩ Vη(d,b) = g(d,b);

• D is a dense open subset of SL(V, δ,W )×Add(1, δ) in V (RV [G]).

Then there exist a complete condition (d′, b′) in (SL(V, δ,W ) × Add(1, δ)) ∩ D
extending (d, b) such that η(d′,b′) > η(d,b) and G ∩ Vη(d′,b′) = g(d′,b′).

Proof. Let η denote η(d,b). If the lemma fails, there exist a condition a in

((Q<δ�aη)/Q<η)V [G∩Vη ]

(call this forcing Q) and Q-names ḃ, ḋ and Ḋ such that a forces over the extension
V [G ∩ Vη] that Ḋ is a dense open subset of the partial order

SL(V, δ,W )×Add(1, δ)
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of V (RV [Ġ]) and (ḋ, ḃ) is a complete element of this partial order such that
G ∩ Vη = g(ḋG,ḃG) and such that for no complete condition (d+, b+) in

(SL(V, δ,W )×Add(1, δ)) ∩ Ḋ

are (d+, b+) ≤ (ḋ, ḃ) and G ∩ Vη(d+,b+)
= g(d+,b+).

Let d∗ = 〈γi : i ≤ ω〉, d′ = 〈γ′i : i ≤ ω〉, b∗, b′ and g be as in Lemma 4.7,
with respect to a. Let (D,B) be a V (RV [G])-generic filter for

SL(V, δ,W )×Add(1, δ)

extending (d∪d∗, b∗), and let H = g(D,B). Then by Lemma 4.8, RV [G] = RV [H].
By the choice of a, ḋ and ḃ, there is a dense open subset D′ of the partial
order SL(V, δ,W )×Add(1, δ) of V (RV [G]) such that for no complete condition
(d+, b+) in

(SL(V, δ,W )×Add(1, δ)) ∩ D
′

are (d+, b+) ≤ (ḋg, ḃg) and H ∩ Vη(d+,b+)
= g(d+,b+).

Let (D′, B′) be the filter in SL(V, δ,W ) × Add(1, δ) of V (R∗) formed by
replacing (d∪d∗, b∗) with (ḋg∪d′, b′) (since M [d∪d∗] = M [ḋg∪d′], this replace-
ment sends conditions to conditions). Then (D′, B′) is V (R∗)-generic, and, by
the final three conclusions of Lemma 4.7, g(D′,B′) = H. By the genericity of
(D′, B′), there exists an η′ > η such that the restriction of D′ and B′ to η′ is a
complete pair (d+, b+) in D′, giving a contradiction.

Given a model M of ZF and an ordinal δ of M , an M -fast club through δ
is a club C ⊂ δ with the property that for all limit elements β of C, C ∩ β is
eventually contained in every club subset of β in M .

Theorem 4.10. Suppose that CH holds, δ is a measurable Woodin cardinal in
V , and κ > δ is a Woodin cardinal. Suppose that V (R∗) is a δ-symmetric
extension of V and (D,B) is V (R∗)-generic for SL(V, δ,W ) × Add(1, δ) as
defined in V (R∗). Then every Σ2

2 sentence which holds in V holds in V [D][B].

Proof. Let ∃X⊂R∀Y⊂R φ(X, Y ) be a Σ2
2 sentence which holds in V . Any two

models of the form V [D][B] are elementarily equivalent, so it suffices to show
that ∃X⊂R∀Y⊂R φ(X, Y ) holds in some such model.

Let a be a condition in P<κ such that

• a forces that H ∩ Vδ will be V -generic for Q<δ, where H ⊂ P<κ is the
generic filter;

• a forces that j(ω1) = δ, where j is the embedding induced by H;

• a forces that P(δ)V has cardinality ℵ1 in V [H];

• a forces that there exists a V -fast club contained in the 1-Mahlo-Woodin
cardinals of V below δ.
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The existence of such an a from a measurable Woodin cardinal is shown in [1, 5],
modulo the fact that any normal measure on δ concentrates on the 1-Mahlo-
Woodin cardinals of V below δ. Let H ⊂ P<κ be a V -generic filter with a ∈ H.
Let j : V → M be the induced embedding. Then G = H ∩ Vδ is V -generic for
Q<δ. Let j′ : V → M ′ be the embedding induced by G. Let C be the V -fast
club added by H. Let ζ be the least strongly inaccessible cardinal of V above
δ. Let R∗ be the reals of M . Then Vζ [G] is in M , and Vζ(R∗) is a symmetric
extension of Vζ .

Since C ∈ M and C is a V -slow club through the 1-Mahlo-Woodin cardinals
of V below δ, M can construct filters in SL(V, δ,W ) × Add(1, δ) below any
condition and meeting any ℵ1 many dense sets in V (R∗). Since M and V (R∗)
have the same ω1 (alternately, since measurable Woodin cardinals are 2-Mahlo-
Woodin), it follows that the forcing SL(V, δ,W )×Add(1, δ) (over V (R∗)) does
not collapse δ. Working in M , construct a Vζ(R∗)-generic filter (D,B) for
SL(Vζ , δ, W ) × Add(1, δ) such that g(D,B) = G. This can be done by Lemma
4.9, using C to guarantee genericity at limit states, and using the fact that
P(δ)V has cardinality ℵ1 in M to ensure genericity of the final filter.

Now let X0 be a set of reals in V such that V |= ∀Y⊂R φ(X0, Y ). Then
j′(X0) = j(X0), so j(X0) ∈ V [G] ⊂ V [D][B], and M |= ∀Y ⊂ R φ(j(X0), Y ).
Since P(δ)V [D][B] ⊂ M , V [D][B] |= ∀Y⊂R φ(j(X0), Y ), and thus the sentence
∃X⊂R∀Y⊂R φ(X, Y ) holds in V [D][B].

It suffices in the statement of Theorem 4.10 (and the corollaries below) to
let δ be a full Woodin cardinal (in the terminology of [1]) and let κ a Woodin
cardinal. The full Woodin cardinals constitute a measure one set for any normal
measure on a measurable Woodin cardinal.

By Lemma 4.4, we get that all Σ2
2 sentences holding in any extension by a

partial ordering in Vδ hold in V [D][B].

Corollary 4.11. Suppose that δ is a measurable Woodin cardinal in V , and
κ > δ is a Woodin cardinal. Suppose that V (R∗) is a δ-symmetric extension of
V and (D,B) is V (R∗)-generic for SL(V, δ,W )×Add(1, δ) as defined in V (R∗),
where W is the set of Woodin cardinals of V below δ. Then if φ is a Σ2

2 sentence
and CH + φ holds in a forcing extension of V by a partial order in Vδ, then φ
holds in V [D][B].

By Lemma 4.2, we get the following.

Corollary 4.12. Suppose that δ is a measurable Woodin cardinal in V , and
κ > δ is a Woodin cardinal. Let (D,B) be V -generic for SC(δ,W ) ∗Add(1, δ),
where W is the set of Woodin cardinals of V below δ. Then if φ is a Σ2

2 sentence
and CH + φ holds in a forcing extension of V by a partial order in Vδ, then φ
holds in V [D][B].

Theorem 4.10 and Corollary 4.11 continue to hold when a predicate for a
universally Baire set of reals is added to the language. Showing this requires
only that, in the proof of Theorem 4.10, if A is universally Baire set of reals
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in V , then j(A) is equal to the reinterpretation of A in V [D][B]. This in turn
follows from the following theorem of Steel (proofs appear in [1, 5]).

Theorem 4.13. Let λ be a strongly inaccessible cardinal and let T be a a λ+-
weakly homogeneous tree. If S is the Martin-Solovay tree for the complement of
the projection of T and k is an elementary embedding derived from forcing with
Q<λ then the corresponding generic embedding k : V → M satisfies k(S) = S.

Corollary 4.14. Suppose that δ is a measurable Woodin cardinal, A is set of
reals such that A and R \A are δ+-weakly homogeneously Suslin and κ > δ is a
Woodin cardinal. Suppose that (D,B) is V -generic for SL(V, δ,W ) ∗Add(1, δ),
where W is the set of Woodin cardinals of V below δ. Then every Σ2

2-sentence
with an additional predicate for A which can be forced to hold by a partial order
in Vδ holds in V [D][B].

It is not possible to add a predicate for NSω1 to the language in Theorem
4.10. One way to see this is given in [6].

A natural question is whether the forcing Add(1, δ) is necessary to achieve
Σ2

2-maximality.
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