# Regular embeddings of the stationary tower and Woodin's $\Sigma_{2}^{2}$ maximality theorem 

Richard Ketchersid Paul B. Larson* Jindřich Zapletal ${ }^{\dagger}$

October 30, 2008


#### Abstract

We present Woodin's proof that if there exists a measurable Woodin cardinal $\delta$, then there is a forcing extension satisfying all $\Sigma_{2}^{2}$ sentences $\phi$ such that $C H+\phi$ holds in a forcing extension of $V$ by a partial order in $V_{\delta}$. We also use some of the techniques from this proof to show that if there exists a stationary limit of stationary limits of Woodin cardinals, then in a homogeneous forcing extension there is an elementary embedding $j: V \rightarrow M$ with critical point $\omega_{1}^{V}$ such that $M$ is countably closed in the forcing extension.


## 1 Introduction

Woodin's $\Sigma_{1}^{2}$ absoluteness theorem (see [5]) says that if $\delta$ is a measurable Woodin cardinal and $\phi$ is a $\Sigma_{1}^{2}$ sentence which can be forced by a partial order in $V_{\delta}$, then $\phi$ holds in every forcing extension by a partial order in $V_{\delta}$ which satisfies the Continuum Hypothesis. A longstanding open question (due to Steel) is whether this result extends to $\Sigma_{2}^{2}$ sentences and Jensen's principle $\diamond$, that is, is there a large cardinal concept implying that whenever $\delta$ is such a cardinal and $\phi$ is a $\Sigma_{2}^{2}$ sentence such that $\phi+C H$ can be forced by a partial order in $V_{\delta}$, then $\phi$ holds in every forcing extension by a partial order in $V_{\delta}$ which satisfies $\diamond$ ? This paper presents a theorem of Woodin in this area, saying that if $\delta$ is a measurable Woodin cardinal, then there is a forcing extension satisfying all $\Sigma_{2}^{2}$ sentences $\phi$ such that $C H+\phi$ holds in a forcing extension of $V$ by a partial order in $V_{\delta}$. We present this result in a slightly extended form, adding predicates for universally Baire sets of reals.

Before presenting Woodin's proof, we use some of the techniques from the proof to show that if there exists a stationary limit of stationary limits of Woodin

[^0]cardinals, then there is a homogeneous partial order which forces that there is an elementary embedding $j: V \rightarrow M$ with critical point $\omega_{1}^{V}$ such that $M$ is countably closed in the forcing extension. Steel has shown that CH plus the existence of such a partial order implies that the Axiom of Determinacy holds in $L(\mathbb{R})$ and stronger models such as $L\left(\mathbb{R}^{\#}\right), L\left(\mathbb{R}^{\# \#}\right)$, etc. The previous consistency strength upper bound for the existence of such a partial order was a superstrong cardinal (see [3] for definitions of the large cardinals used in this paper, and [5] for background on the stationary tower). This work came after we learned Woodin's proof, but since it is simpler we present it first.

### 1.1 Terminology

We say that two partial orders are forcing-equivalent if the regular open algebras they generate are isomorphic, and that a partial order $P$ is homogeneous if for every pair of conditions $p, q$ in $P$ there are conditions $p^{\prime} \leq p$ and $q^{\prime} \leq q$ such that the restrictions of $P$ below $p^{\prime}$ and $q^{\prime}$ are forcing-equivalent. If $P$ is a homogeneous partial order, then the theory (with parameters from the ground model) of every $P$-extension is the same, and thus computable in the ground model. We make key use of a standard forcing fact due to McAloon (Lemma 26.7 of [2] and Theorem A.0.7 of [5]), where for any cardinal $\gamma$ and any set $X$, $\operatorname{Coll}(\gamma, X)$ is the partial order consisting of partial functions from $\gamma$ to $X$ of cardinality less than $\gamma$, ordered by inclusion.

Theorem 1.1. Any separative partial order $P$ such that forcing with $P$ makes $P$ countable is forcing-equivalent to $\operatorname{Coll}(\omega, P)$.

## 2 Slow clubs

Suppose that $M$ is a model of ZF, and let $\delta$ be an ordinal in $M$. An $M$-slow club through $\delta$ is a club $D \subset \delta$ with the property that for each limit element $\beta$ of $D, D$ intersects every club subset of $\beta$ in $M$. When $\beta$ has cofinality $\omega$ in the model containing $D$, the intersection requirement in the notion of slow club is nontrivial. Given a set (or class) of ordinals $S$, we say that a limit ordinal $\gamma$ is 1-S-Mahlo if $S \cap \gamma$ is a stationary subset of $\gamma$, and, for any positive $n \in \omega, \gamma$ is $(n+1)-S$-Mahlo if the set of $n$ - $S$-Mahlo ordinals in $S$ below $\gamma$ is stationary. If $D$ is an $M$-slow club contained in a set $S$ in $M$, then every limit point of $D$ is 1-S-Mahlo in $M$. For any stationary set $S$ consisting of limit ordinals, the set of $\gamma \in S$ which are not $1-S$-Mahlo is also stationary, since for any club $C \subset \sup (S)$ consisting of limit ordinals, the first limit point of $C$ in $S$ is such a $\gamma$. This puts some limitations on methods for adding slow clubs.
2.1 Definition. Suppose that $\delta$ is a limit ordinal and $S$ is a subset of $\delta$. We let $S C(\delta, S)$ be the partial order consisting of triples $(c, e, f)$ such that

- $c$ is a finite subset of $S$;
- $e$ is a finite set of closed, bounded intervals of $\delta$ disjoint from $c$;
- $f$ is a regressive function whose domain is the set of $\alpha \in c$ which are not 1-S-Mahlo;
- $(f(\alpha), \alpha) \cap c=\emptyset$ for each $\alpha \in \operatorname{dom}(f)$.

Given $(c, e, f),(b, d, g)$ in $S C(\delta, S),(c, e, f) \leq(b, d, g)$ if $b \subset c, d \subset e$ and $g \subset f$.
The partial order $S C(\delta, S)$ has cardinality $\delta$. Fact 2.2 below shows that if $S$ is cofinal in $\delta$ and $G \subset S C(\delta, S)$ is a $V$-generic filter, then

$$
C_{G}=\bigcup\{c \mid(c, e, f) \in G\}
$$

is an unbounded subset of $\delta$ (we call $C_{G}$ the generic club added by $S C(\delta, S)$ ). Fact 2.3 shows that $C_{G}$ is closed. Together they show that $C_{G}$ is a $V$-slow club subset of $\delta$ when $S$ is cofinal in $\delta$; moreover, they show that for each limit element $\beta$ of $C_{G}, C_{G} \cap \beta$ intersects every cofinal subset of $\beta \cap S$ in the ground model. By Fact 2.2 and the definition of $S C(\delta, S)$, for each $\gamma \in C_{G}, \gamma$ is a limit point of $C_{G}$ if and only if $\gamma$ is $1-S$-Mahlo in $V$.
2.2 Fact. Let $(c, e, f)$ be a condition in $S C(\delta, S)$ and let $\gamma$ be any element of

$$
S \backslash(\bigcup e \cup \bigcup\{(f(\alpha), \alpha): \alpha \in \operatorname{dom}(f)\}) .
$$

If $\gamma$ is 1 - $S$-Mahlo, then $(c \cup\{\gamma\}, e, f) \in S C(\delta, S)$ and $(c \cup\{\gamma\}, e, f) \leq(c, e, f)$. If $\gamma$ is not $1-S$-Mahlo, then $(c \cup\{\gamma\}, e, f \cup\{(\gamma, \max (c \cap \gamma))\}) \in S C(\delta, S)$ and

$$
(c \cup\{\gamma\}, e, f \cup\{(\gamma, \max (c \cap \gamma))\}) \leq(c, e, f) .
$$

2.3 Fact. If $(c, e, f)$ is a condition in $S C(\delta, S)$ and $\gamma \in \delta \backslash c$ is a limit ordinal, then

$$
(c, e \cup\{[\max (c \cap \gamma)+1, \gamma]\}, f) \leq(c, e, f) .
$$

Fact 2.4 below shows that the forcing $S C(\delta, S)$ factors at each 1-S-Mahlo ordinal in $S$ below $\delta$. We will use this fact to demonstrate the homogeneity of various forcings considered in this paper. It also shows that if $\delta$ is a regular cardinal and 2-S-Mahlo, then $S C(\delta, S)$ preserves the regularity of $\delta$, since, in this case, for every dense $D \subset S C(\delta, S)$ there will be club many $\gamma<\delta$ such that $D \cap S C(\gamma, S \cap \gamma)$ is dense in $S C(\gamma, S \cap \gamma)$.
2.4 Fact. For any condition $(c, e, f) \in S C(\delta, S)$, and any 1-S-Mahlo $\alpha \in c$, the partial order $S C(\delta, S)$ below ( $c, e, f$ ) is isomorphic to the partial order

$$
S C(\alpha, S \cap \alpha) \times S C(\delta, S \backslash(\alpha+1))
$$

below the condition

$$
\left(\left(c \cap \alpha,\{I \in e \mid I \subset \alpha\}, f \cap \alpha^{\alpha}\right),\left(c \backslash(\alpha+1),\{I \in e \mid I \cap \alpha=\emptyset\}, f \backslash \alpha^{\alpha}\right)\right) .
$$

Lemma 2.5 below shows that when $\delta$ is a regular cardinal and $2-S$-Mahlo, every set of ordinals of cardinality less than $\delta$ in the $S C(\delta, S)$-extension is added by an initial segment of the partial order. It follows that forcing with $S C(\delta, S)$ makes CH hold when $\delta$ is strongly inaccessible and $2-S$-Mahlo, since Lemma 2.6 implies that $\delta$ is the $\omega_{1}$ of such an extension.

Lemma 2.5. Suppose that $\delta$ is a regular cardinal, $S \subset \delta$ and $\delta$ is 2-S-Mahlo. Let $G \subset S C(\delta, S)$ be $V$-generic. Then for every element $x$ of $[O r d]^{<\delta}$ in $V[G]$, there exists a limit member $\gamma$ of $C_{G}$ such that $G \cap S C(\gamma, S \cap \gamma)$ is $V$-generic for $S C(\gamma, S \cap \gamma)$, and $x \in V[G \cap S C(\gamma, S \cap \gamma)]$.
Proof. Fix $\xi<\delta$ and let $\tau_{\alpha}(\alpha<\xi)$ be $S C(\delta, S)$-names for ordinals. For each $\alpha<\xi$, let $T_{\alpha}$ be the set of pairs $(p, \beta)$ such that $p \in S C(\delta, S)$ and $p \Vdash \tau_{\alpha}=\check{\beta}$. Let $q=(c, e, f)$ be a condition in $S C(\delta, S)$. Let $\theta$ be a regular cardinal greater than $2^{\delta}$ and let $Z$ be an elementary submodel of $H(\theta)$ such that

$$
\left\{\delta, S, q,\left\langle T_{\alpha}: \alpha<\xi\right\rangle\right\} \in Z
$$

$Z \cap \delta \in S$ and $Z \cap \delta$ is 1 - $S$-Mahlo. Let $\gamma=Z \cap \delta$. Then $(c \cup\{\gamma\}, e, f) \leq(c, e, f)$, and, by Lemma 2.4, $(c \cup\{\gamma\}, e, f)$ forces that the restriction of the generic filter to $S C(\gamma, S \cap \gamma)$ will be generic. Furthermore, for each $\alpha<\xi$,

$$
\left\{p \in S C(\gamma, S \cap \gamma) \mid \exists \beta(\check{\beta}, p) \in T_{\alpha}\right\}
$$

is predense in $S C(\gamma, S \cap \gamma)$ below ( $c, e, f)$. The lemma then follows by Fact 2.4.

It follows from Lemma 2.5 that if $\delta$ is a regular cardinal and $2-S$-Mahlo, then $\delta$ has uncountable cofinality in the $S C(\delta, S)$ extension. The following lemma is a sort of converse. Applying Theorem 1.1, it also shows that in many cases $S C(\gamma, S)$ is forcing-equivalent to $\operatorname{Coll}(\omega, \gamma)$. It follows that $S C(\delta, S)$ makes $\delta$ countable if $S$ consists of regular cardinals and $\delta$ is a limit of 1-S-Mahlo ordinals, but not 2 - $S$-Mahlo.

Lemma 2.6. Let $\gamma$ be an ordinal, let $S$ be a cofinal subset of $\gamma$, and suppose that $\gamma$ is not a limit of 1-S-Mahlo members of $S$. Then forcing with $S C(\gamma, S)$ makes $c f(\gamma)^{V}$ countable.
Proof. Let $\beta$ be the supremum of the 1-S-Mahlo members of $S$ below $\delta$ (let $\beta=0$ if this set is empty), and let $\left\{T_{\alpha}: \alpha<\operatorname{cof}(\gamma)\right\}$ be a partition of $S$ into cofinal sets. The generic club given by $S C(\gamma, S)$ will have ordertype $\omega$ in the interval $(\beta, \gamma)$, and will intersect each $T_{\alpha}$, inducing a surjection from $\omega$ onto $\operatorname{cof}(\gamma)$.

The following lemma gives a homogeneity property of $S C(\delta, S)$ for suitable $\delta$ and $S$.

Lemma 2.7. Suppose that $\delta$ is a cardinal, and that $S$ is a set of regular cardinals below $\delta$ such that $\delta$ is a limit of 1-S-Mahlo members of $S$. Let $p$ and $q$ be conditions in $S C(\delta, S)$. Then there exist conditions $p^{\prime} \leq p$ and $q^{\prime} \leq q$ such that the restrictions of $S C(\delta, S)$ below $p^{\prime}$ and $q^{\prime}$ are forcing-equivalent.

Proof. Let $p=(b, d, g)$ and $q=(c, e, f)$. Let $\gamma \in S$ be 1-S-Mahlo but not a limit of 1-S-Mahlo ordinals, such that $\gamma$ is larger than every member of $b \cup c \cup \bigcup d \cup \bigcup e$. Let $p^{\prime}=(b \cup\{\gamma\}, d, g)$ and let $q^{\prime}=(c \cup\{\gamma\}, e, f)$. Then $S C(\delta, S)$ below the condition $p^{\prime}$ is isomorphic to

$$
S C(\gamma, S \cap \gamma) \times S C(\delta, S \backslash(\gamma+1))
$$

below the condition

$$
((b, d, g),(\emptyset, \emptyset, \emptyset))
$$

and $S C(\delta, S)$ below the condition $q^{\prime}$ is isomorphic to

$$
S C(\gamma, S \cap \gamma) \times S C(\delta, S \backslash(\gamma+1))
$$

below the condition

$$
((c, e, f),(\emptyset, \emptyset, \emptyset))
$$

By Lemma 2.6, $S C(\gamma, S \cap \gamma)$ below $(b, d, g)$ and $S C(\gamma, S \cap \gamma)$ below $(c, e, f)$ are both forcing-equivalent to $\operatorname{Coll}(\omega, \gamma)$.

## 3 Slow clubs and the stationary tower

Given $n \in \omega$ and a cardinal $\delta$, we say that $\delta$ is $n$-Mahlo-Woodin if it is $n$ - $W$ Mahlo, where $W$ denotes the class of Woodin cardinals. Recall that a stationary limit of regular cardinals is regular, so a stationary limit of Woodin cardinals is Woodin. The hypotheses of Theorem 3.1 below imply that $\omega_{1}^{V}$ is a 2 -MahloWoodin cardinal in $M$.

Our main application of slow clubs is the construction of $\mathbb{Q}_{<\delta}^{M}$-generic filters for suitable inner models $M$.

Theorem 3.1. Suppose that $M$ is a model of $Z F C$ and $D \subset \omega_{1}^{V}$ is an $M$-slow club contained in the Woodin cardinals of $M$. Then there exists an $M$-generic filter for $\mathbb{Q}_{<\omega_{1}^{V}}^{M}$ containing any given condition.

Before beginning the proof, we note (see Lemma 2.7.14 of [5]) that if $\gamma$ is a Woodin cardinal then there is a stationary set (which we will call $a_{\gamma}$ ) consisting of countable subsets of $V_{\gamma+1}$ such that for every strongly inaccessible cardinal $\eta>\gamma$, the inclusion map regularly embeds $\mathbb{Q}<\gamma$ into the restriction of $\mathbb{Q}_{<\eta}$ to conditions $b \leq a_{\gamma}$. Indeed, for such $\eta$ and $\gamma, a_{\gamma}$ is in the generic filter for $\mathbb{Q}<\eta$ if and only if the restriction of the generic filter to $\mathbb{Q}<\gamma$ is generic (Lemma 2.7.16 of [5]).
Proof of Theorem 3.1. Let $p$ be a condition in $\mathbb{Q}_{<\omega_{1}^{V}}^{M}$. Removing an initial segment of $D$ if necessary, we may assume that $p \in \mathbb{Q}_{<\gamma_{0}}^{M}$, where $\gamma_{0}$ is the least element of $D$. For each $\gamma \in D$, let $\mathcal{G}_{\gamma}$ be the set of $g$ such that

- $g$ is an $M$-generic filter for $\mathbb{Q}_{<\gamma}^{M}$ containing $p$;
- for all $\eta \in D \cap \gamma, g \cap V_{\eta}^{M}$ is $M$-generic for $\mathbb{Q}_{<\eta}^{M}$.

Since $\omega_{1}^{V}$ is a strongly inaccessible cardinal in $M, \mathcal{G}_{\gamma_{0}}$ is nonempty.
Let $T$ be the tree on $\bigcup_{\gamma \in D} \mathcal{G}_{\gamma}$ ordered by: $g \geq h$ whenever $g \in \mathcal{G}_{\gamma}$ and $h \in \mathcal{G}_{\eta}$, for some $\gamma, \eta$ in $D$, and $g \cap V_{\eta}^{M}=h$. The fact mentioned before the proof (and the fact that $\omega_{1}^{V}$ is strongly inaccessible in $M$ ) implies that every member of $\mathcal{G}$ has proper extensions in $T$. The theorem follows from the fact that $T$ is countably closed, and the fact that the union of each uncountable branch through $T$ is an $M$-generic filter for $\mathbb{Q}_{<\omega_{1}^{V}}^{M}$.

To see that $T$ is countably closed, note that if $\gamma$ is a limit point of $D$, then each predense subset of $\mathbb{Q}_{<\gamma}^{M}$ in $M$ has predense intersection with $\mathbb{Q}_{<\eta}^{M}$ for club many $\eta<\gamma$, relative to the set of strongly inaccessible cardinals below $\gamma$, and thus with $\mathbb{Q}_{<\eta}^{M}$ for some $\eta \in \gamma \cap D$. It follows that if $g$ is a subset of $\mathbb{Q}_{<\gamma}^{M}$ such that $g \cap \mathbb{Q}_{<\eta}^{M}$ is an $M$-generic filter for all $\eta \in \gamma \cap D$, then $g$ is also an $M$-generic filter. Similarly, each predense subset of $\mathbb{Q}_{<\omega_{1}^{V}}^{M}$ in $M$ has predense intersection with $\mathbb{Q}_{<\eta}^{M}$ for (relative) club many $\eta<\omega_{1}^{V}$, and thus with $\mathbb{Q}_{<\eta}^{M}$ for some $\eta \in D$. It follows that if $G$ is a subset of $\mathbb{Q}_{<\omega_{1}^{V}}^{M}$ such that $G \cap \mathbb{Q}_{<\eta}^{M}$ is an $M$-generic filter for all $\eta \in D$, then $G$ is also an $M$-generic filter.

It follows from Theorem 3.1 that $\mathbb{Q}<\delta$ regularly embeds into any forcing which collapses $\delta$ to be $\omega_{1}$ and adds a $V$-slow club through the Woodin cardinals below $\delta$. The results of the previous section show that that $S C(\delta, W)$ is such a forcing when $W$ is the set of Woodin cardinals below a 2-Mahlo-Woodin cardinal $\delta$.

A classical forcing fact (Corollary A.0.6 of [5]) says that if $M$ is a model of ZFC, $\delta$ is a limit ordinal of $M$ and $x, y$ are sets such that $\{x, y\}$ exists in a generic extension of $M$ by a partial order in $V_{\delta}^{M}$, then $x$ exists in a generic extension of $M[y]$ by a partial order in $V_{\delta}^{M[y]}$. Recall that whenever $\delta$ is a strongly inaccessible cardinal, every forcing of cardinality less than $\delta$ regularly embeds into $\mathbb{Q}_{<\delta}$ and the image model of the embedding contains every real of the forcing extension (see Theorems 2.7.7 and 2.7.8 of [5]). These facts allow a modification of the proof of Theorem 3.1 giving the following theorem. We use the notion of nice names from [4] (see page 208), simply to restrict to a sufficiently large set-sized collection of names.

Theorem 3.2. Let $\delta$ be a 2-Mahlo-Woodin cardinal, let $W$ denote the Woodin cardinals of $V$ below $\delta$, and let $G \subset S C(\delta, W)$ be a $V$-generic filter. Then there exists in $V[G]$ a $V$-generic filter $H \subset \mathbb{Q}_{<\delta}^{V}$, containing any given condition, such that $V[H]$ contains the reals of $V[G]$.

Proof. Let $p$ be a condition in $\mathbb{Q}_{<\delta}^{V}$ and let $\gamma_{0}$ be the least Woodin cardinal $\gamma$ with $p \in \mathbb{Q}<\gamma$. Let $W_{1}^{0}$ be the set of 1-Woodin-Mahlo cardinals in $\left(\gamma_{0}, \delta\right)$ which are not limits of 1-Woodin-Mahlo cardinals. Let $\left\langle\tau_{\xi}: \xi<\delta\right\rangle$ be a listing in $V$ of all nice $S C(\gamma, W \cap \gamma)$-names for reals, for all 1-Woodin-Mahlo $\gamma<\delta$.

For each $\alpha<\beta$ in $W_{1}^{0}$, let $N_{\alpha, \beta}$ be the set of nice $S C(\beta, W \cap \beta)$-names $\sigma$ for which it is forced that if $\alpha$ and $\beta$ are in $C_{G}$, then the realization of $\sigma$ is a $V$-generic filter $h \subset \mathbb{Q}_{<\alpha}$ such that

- $h \cap \mathbb{Q}_{<\gamma_{0}}$ is a $V$-generic filter containing $p$.
- $h \cap \mathbb{Q}_{<\gamma}$ is $V$-generic for all $\gamma \in\left(C_{G} \cap \alpha\right) \backslash \gamma_{0}$.

Fix (suppressed) wellorders of the sets $N_{\alpha, \beta}$.
Let $C^{*}$ be the set of limit points of $C_{G}$. Working in $V[G]$, recursively define a sequence $\left\langle h_{\alpha}: \alpha \in C^{*} \backslash\left(\gamma_{0}+1\right)\right\rangle$ such that

- $h_{\min \left(C^{*} \backslash\left(\gamma_{0}+1\right)\right)}=\emptyset$;
- if $\gamma$ is a limit element of $C^{*} \backslash\left(\gamma_{0}+1\right), \alpha$ is the least element of $C^{*}$ greater than $\gamma$ and $\beta$ is the least element of $C^{*}$ greater than $\alpha$, then $h_{\alpha}$ is the realization by $G$ of the least element of $N_{\alpha, \beta}$ whose realization $h$ extends $h_{\gamma}$ and has the realization of $\tau_{\xi}$ in $V[h]$, where $\xi<\delta$ is least such that
- $\tau_{\xi}$ is an $S C(\eta, W \cap \eta)$-name for a real, for some $\eta \in C^{*} \cap(\gamma+1)$, and
- the realization of $\tau_{\xi}$ by $h_{\gamma}$ is not in $V\left[h_{\gamma}\right]$,
if such an $\xi$ exists, otherwise $h_{\alpha}$ is the realization of the least element of $N_{\alpha, \beta}$ whose realization $h$ extends $h_{\gamma}$;
- if $\gamma$ is not a limit element of $C^{*} \backslash\left(\gamma_{0}+1\right), \alpha$ is the least element of $C^{*}$ greater than $\gamma$ and $\beta$ is the least element of $C^{*}$ greater than $\alpha$, then $h_{\alpha}$ is the realization of the least element of $N_{\alpha, \beta}$ which extends $h_{\gamma}$;
- if $\alpha$ is a limit element of $C^{*} \backslash\left(\gamma_{0}+1\right)$, then $h_{\alpha}=\bigcup_{\beta \in \alpha \cap C^{*}} h_{\beta}$.

It follows from this construction that whenever $\gamma$ is a limit element of the set $C^{*} \backslash\left(\gamma_{0}+1\right), h_{\gamma} \in V[G \cap S C(\gamma, W \cap \gamma)]$. Let $H=\bigcup\left\{h_{\alpha}: \alpha \in C^{*} \backslash\left(\gamma_{0}+1\right)\right\}$. Let $E$ be the set of $\xi<\delta$ such that $\tau_{\xi}$ is an $S C(\eta, W \cap \eta)$-name, for some $\xi \in C^{*}$. By Lemma 2.5, every real in $V[G]$ is the realization of $\tau_{\xi}$ for some $\xi \in E$. If $\xi$ were the least $\zeta \in E$ such that the realization of $\tau_{\zeta}$ were not in $V[H]$, then, since $\xi$ is countable in $V[H]$ and $\delta$ is uncountable, there would be some limit element $\gamma$ of $C^{*} \backslash\left(\gamma_{0}+1\right)$ such that $\xi$ is the least $\zeta<\delta$ such that

- $\tau_{\zeta}$ is an $S C(\eta, W \cap \eta)$-name for a real, for some $\eta \in C^{*} \cap(\gamma+1)$, and
- the realization of $\tau_{\zeta}$ by $h_{\gamma}$ is not in $V\left[h_{\gamma}\right]$.

Then the realization of $\tau_{\xi}$ is in $V\left[h_{\alpha}\right]$ by the construction above, where $\alpha$ is the least element of $C^{*}$ above $\gamma$.

Theorem 3.3 below is the main original result of this paper.
Theorem 3.3. Suppose that $\delta$ is a 2-Mahlo-Woodin cardinal, and let $W$ denote the set of Woodin cardinals below $\delta$. Then the partial order $S C(\delta, W)$ is homogeneous, and in the extension by this partial order there is an elementary embedding from $V$ into a model $M$ which is closed under $\omega$-sequences in the forcing extension.

Proof. The partial order $S C(\delta, W)$ is homogeneous by Lemma 2.7. By Lemma 2.5 , every countable set of ordinals in any forcing extension of $V$ by $S C(\delta, W)$ is in a model of the form $V[x]$ for some real in the extension. By Lemma 3.2, in any $S C(\delta, W)$ extension there is a $V$-generic filter $H \subset \mathbb{Q}_{<\delta}^{V}$ such that $V[H]$ contains all the reals of the $S C(\delta, W)$-extension, and therefore all initial segments of the $S C(\delta, W)$-generic filter. Then the image model $M$ of the embedding induced by $H$ is $\omega$-closed in $V[H]$, which is $\omega$-closed in the $S C(\delta, W)$-extension, which means that $M$ is $\omega$-closed in this extension.

## $4 \quad \Sigma_{2}^{2}$ maximality

Given a strong limit cardinal $\delta$ of a ZFC model $M$, we take a $\delta$-symmetric extension of $M$ to be the least model $M\left(\mathbb{R}^{*}\right)$ of ZF containing $M$ and a set of reals $\mathbb{R}^{*}$ with the properties that

- $M\left(\mathbb{R}^{*}\right) \cap \mathbb{R}=\mathbb{R}^{*}$;
- every member of $\mathbb{R}^{*}$ is generic over $M$ by a forcing in $V_{\delta}^{M}$;
- the supremum of $\left\{\omega_{1}^{L[x]}: x \in \mathbb{R}^{*}\right\}$ is $\delta$.

We refer the reader to $[2,5]$ for more general definitions of symmetric extension. We typically denote a symmetric extension of a model $M$ by $M\left(\mathbb{R}^{*}\right)$, where $\mathbb{R}^{*}$ is understood to be the reals of the extension. We note the following facts about $\delta$-symmetric extensions, for a strong limit cardinal $\delta:(1)$ any two $\delta$-symmetric extensions of $M$ are elementarily equivalent (even with parameters from $M$ ); (2) if $M\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $M$ and $P$ is a partial order in $V_{\delta}^{M}$ then $M\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of an extension of $M$ by $P$.

The following is Theorem 3.1.6 in [5].
Theorem 4.1. If $\delta$ is a Woodin limit of Woodin cardinals and $G \subset \mathbb{Q}<\delta$ is a $V$-generic filter, then $V\left(\mathbb{R}^{V[G]}\right)$ is a $\delta$-symmetric extension of $V$.

Whenever $\kappa$ is a strongly inaccessible cardinal and $G$ is $V$-generic for the partial order $\operatorname{Coll}(\omega,<\delta), V\left(\mathbb{R}^{V[G]}\right)$ is a $\delta$-symmetric extension of $V$. Fact 2.4 and Lemma 2.6 show that the same is true for $S C(\delta, S)$, when $\delta$ is a strongly inaccessible and $2-S$-Mahlo, and $S$ is a set of regular cardinals.

Given a model $M$ of ZF, an ordinal $\delta \in M$ and $S \subset \delta$ in $M$, let $S L(M, \delta, S)$ be the partial order consisting of all $M$-generic filters for partial orders of the form $S C(\gamma, S \cap \gamma)^{M}$, where $\gamma \in S$ is 1-S-Mahlo in $M$, ordered by end-extension. When $g \in S L(M, \delta, S)$ is an $M$-generic filter for $S C(\gamma, S \cap \gamma)^{M}$, we say that the length of $g$ is $\gamma$. Since filters for $S C(\delta, S)$ are uniquely determined by their corresponding club sets, we somtimes identify a condition $g$ in $S L(M, \delta, S)$ with the set $C_{g} \cup\left\{\sup \left(C_{g}\right)\right\}$; so each condition can be identified with a closed, bounded subset of $S$.

The partial order $S L(M, \delta, S)$ is not $\omega$-closed. However, it is a tree ordering, so if the set of $1-S$-Mahlo $\gamma \in S$ is cofinal in $\delta$ and $\delta$ is the $\omega_{1}$ of some
$S L(M, \delta, S)$-extension, then there are no new countable sequences of ordinals in this extension.

We let $\operatorname{Add}(1, \delta)$ denote the forcing which adds a subset of $\delta$ by initial segments. The following lemma follows from Theorem 1.1, Fact 2.4, Lemmas 2.6 and 2.5 , and genericity.

Lemma 4.2. Suppose that

- $\delta$ is a regular uncountable cardinal;
- $S$ is a set of regular cardinals below $\delta$ and $\delta$ is 2-S-Mahlo;
- $V\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $V$;

Then

- if $D$ is a $V\left(\mathbb{R}^{*}\right)$-generic club for $S L(V, \delta, S)$, then
- $D$ is $V$-generic for $S C(\delta, S)$,
$-\mathbb{R}^{*} \subset V[D]$,
$-V\left(\mathbb{R}^{*}\right)[D]=V[D] ;$
- if $(D, B)$ is $V\left(\mathbb{R}^{*}\right)$-generic for $S L(V, \delta, S) \times \operatorname{Add}(1, \delta)$, then
$-B$ is $V[D]$-generic for $\operatorname{Add}(1, \delta)$,
$-V\left(\mathbb{R}^{*}\right)[D][B]=V[D][B]$,
$-V[D][B]$ is a generic extension of $V$ by the partial order

$$
S C(\delta, S) * \operatorname{Add}(1, \delta)
$$

- forcing with $S L(V, \delta, S)$ over $V\left(\mathbb{R}^{*}\right)$ does not collapse $\delta$.

Proof. To see that $D$ is $V$-generic for $S C(\delta, S)$, let $E$ be a dense subset of $S C(\delta, S)$ in $V$ and let $g$ be a condition in $S L(V, \delta, S)$. Let $\gamma$ be the length of $g$. By Fact 2.4, $S C(\delta, S)$ below $(\{\gamma\}, \emptyset, \emptyset)$ is isomorphic to

$$
S C(\gamma, S \cap \gamma) \times S C(\delta, S \backslash(\gamma+1))
$$

and we can let $E^{\prime}$ be the image of $E$ (below $(\{\gamma\}, \emptyset, \emptyset)$ ) in this product. Since $g$ is a generic filter for $S C(\gamma, S \cap \gamma)$, there is a condition $(p, q)$ in $E^{\prime}$ with $p \in g$. Let $\eta>\gamma$ be 1-S-Mahlo in $V$ with $q \in S C(\eta, S \cap(\gamma, \eta))$, and let $h$ be a $V[g]$-generic filter for $S C(\eta, S \cap(\gamma, \eta))$ with $q \in h$. Then the preimage of $(g, h)$ in $S C(\delta, S)$ is a condition in $S L(V, \delta, S)$ extending $g$ meeting $E$. By genericity, then, $D$ is $V$-generic for $S C(V, \delta, S)$.

To see that $\mathbb{R}^{*} \subset V[D]$, fix $x \in \mathbb{R}^{*}$ and let $g$ be a condition in $S L(V, \delta, S)$. Let $\gamma$ be the length of $g$. By Fact 2.4, SC $(\delta, S)$ below $(\{\gamma\}, \emptyset, \emptyset)$ is isomorphic to $S C(\gamma, S \cap \gamma) \times S C(\delta, S \backslash(\gamma+1))$. Let $\eta<\delta$ be the least 1-S-Mahlo cardinal in $S$ such that the pair $\{g, x\}$ is $V$-generic for a partial order of cardinality $\eta$. Let $h$ be a $V[g]$-generic filter for $S C(\eta, S \cap(\gamma, \eta))$ with $x \in V[g][h]$. Then the
preimage of $(g, h)$ in $S C(\delta, S)$ is a condition $g^{\prime}$ in $S L(V, \delta, S)$ extending $g$ with $x \in V\left[g^{\prime}\right]$. By genericity, then, $\mathbb{R}^{*} \subset V[D]$.

To see that $B$ is $V[D]$-generic for $\operatorname{Add}(1, \delta)$, let $(g, a)$ be a condition in $S L(V, \delta, S) \times \operatorname{Add}(1, \delta)$, and let $\tau$ be an $S C(\delta, S)$-name for a dense subset of $\operatorname{Add}(1, \delta)$. By the $V$-genericity of $D$, and Lemma 2.5, whenever $D^{*}$ is $V\left(\mathbb{R}^{*}\right)$ generic for $S L(V, \delta, S)$, every real in $V\left[D^{*}\right]$ is in $V\left[D^{*} \cap \eta\right]$ for some $\eta<\delta$. Therefore, there is a condition $g^{\prime}$ below $g$ in $S L(V, \delta, S)$ such that $a \in V\left[g^{\prime}\right]$ and such that some extension $b$ of $a$ in $V\left[g^{\prime}\right]$ is forced by some condition in $g^{\prime}$ to be in the realization of $\tau$. Then $\left(g^{\prime}, b\right)$ is below $(g, a)$, and the $V[D]$-genericity of $B$ follows by the $V\left(\mathbb{R}^{*}\right)$-genericity of $(D, B)$.

By Lemma 2.5 and the $V$-genericity of $D$ for $S C(\delta, S)$, forcing with $S L(V, \delta, S)$ over $V\left(\mathbb{R}^{*}\right)$ does not collapse $\delta$. This in turn implies that $V\left(\mathbb{R}^{*}\right)[D]=V[D]$, and that forcing with $S L(V, \delta, S) \times \operatorname{Add}(1, \delta)$ over $V\left(\mathbb{R}^{*}\right)$ does not collapse $\delta$.

The following lemma uses Corollary 26.10 of [2], which (for our purposes) says that if $\gamma$ is a regular cardinal, $G \subset \operatorname{Coll}(\omega, \gamma)$ is a $V$-generic filter, and $x \in V[G]$ is subset of $V$ such that $\gamma$ is uncountable in $V[x]$, then there exists a $V[x]$-generic filter $H \subset \operatorname{Coll}(\omega, \gamma)$ such that $V[G]=V[x][H]$.

Lemma 4.3. Suppose that

- $M$ is a model of ZFC;
- $\delta \leq \omega_{1}^{V}$ is an ordinal;
- $\mathcal{P}(\alpha)^{M}$ is countable for each $\alpha<\delta$;
- $S \subset \delta$ is a set of regular cardinals in $M$;
- $\delta$ is a limit of 1-S-Mahlo ordinals in $M$.

Then $S L(M, \delta, S)$ is homogeneous.
Proof. Let $p, q$ be conditions in $S L(M, \delta, S)$ of length $\gamma_{p}$ and $\gamma_{q}$, respectively. Let $\gamma$ be the least 1-S-Mahlo cardinal of $M$ above both $\gamma_{p}$ and $\gamma_{q}$ such that the pair $\{p, q\}$ is $M$-generic for a partial order in $V_{\gamma}^{M}$. Since $S C\left(\gamma, S \backslash\left(\gamma_{p}+1\right)\right)$ and $S C\left(\gamma, S \backslash\left(\gamma_{q}+1\right)\right)$ are both forcing-equivalent to $\operatorname{Coll}(\omega, \gamma)$, there exist by Corollary 26.10 of [2] and Lemma 2.4 conditions $p^{\prime} \leq p$ and $q^{\prime} \leq q$ of length $\gamma$ such that $M\left[p^{\prime}\right]=M\left[q^{\prime}\right]$. Then the restrictions of the partial order $S L(M, \delta, S)$ below the conditions $p^{\prime}$ and $q^{\prime}$ are isomorphic.

Lemma 4.4 is a variation of Lemma 4.3. Since $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$ is homogeneous (in the context of Lemma 4.3), Lemma 4.4 shows that the $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$-extension of $V\left(\mathbb{R}^{*}\right)$ is elementarily equivalent to the same extension defined over any forcing extension of $V$ by a partial order in $V_{\delta}$. An analogous version of the lemma for the partial order $S C(\delta, W) * \operatorname{Add}(1, \delta)$ follows from the existence of a 2-Mahlo-Woodin cardinal. We will apply the lemma in an even stronger context.

Lemma 4.4. Suppose that

- $\delta$ is a strongly inaccessible limit of 1-Mahlo-Woodin cardinals;
- $V\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $V$;
- $P, Q$ are partial orders in $V_{\delta}$;
- $g \subset P$ and $h \subset Q$ are $V$-generic filters in $V\left(\mathbb{R}^{*}\right)$;
- $W_{g}$ is the set of Woodin cardinals of $V[g]$ below $\delta$;
- $W_{h}$ is the set of Woodin cardinals of $V[h]$ below $\delta$;
- $p$ is a condition in $S L\left(V[g], \delta, W_{g}\right)$;
- $q$ is a condition in $S L\left(V[h], \delta, W_{h}\right)$.

Then there exist conditions $p^{\prime} \leq p$ and $q^{\prime} \leq q$ such that $S L\left(V[g], \delta, W_{g}\right)$ below $p^{\prime}$ and $S L\left(V[h], \delta, W_{h}\right)$ below $q^{\prime}$ are isomorphic.

Proof. Let $\gamma_{p}$ and $\gamma_{q}$ be the respective lengths of $p$ and $q$. Let $\gamma$ be the least 1-S-Mahlo cardinal of $V$ above both $\gamma_{p}$ and $\gamma_{q}$ such that the set $\{p, q, g, h\}$ is $V$-generic for a partial order in $V_{\gamma}$. Since $S C\left(\gamma, W_{g} \backslash\left(\gamma_{p}+1\right)\right)^{V[g]}$ and $S C\left(\gamma, W[h] \backslash\left(\gamma_{q}+1\right)\right)^{V[h]}$ are both forcing-equivalent to $\operatorname{Coll}(\omega, \gamma)$ in their respective models, there exist by Corollary 26.10 of [2] and Lemma 2.4 conditions $p^{\prime} \leq p$ in $S L\left(V[g], \delta, W_{g}\right)$ and $q^{\prime} \leq q$ in $S L\left(V[h], \delta, W_{h}\right)$ of length $\gamma$ such that $V[g]\left[p^{\prime}\right]=V[h]\left[q^{\prime}\right]$. Then since $W_{g} \backslash \gamma=W_{h} \backslash \gamma, p^{\prime}$ and $q^{\prime}$ are as desired.

If $V\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $V$ and $B$ is $V\left(\mathbb{R}^{*}\right)$-generic for $\operatorname{Add}(1, \delta)$, then, considering consecutive $\omega$-sequences from $\delta$ and membership (or not) in $B, B$ lists all the members of $\mathbb{R}^{*}$, so $V\left(\mathbb{R}^{*}\right)[B]$ and $V[B]$ are the same model. We fix a recursive coding of elements of $H\left(\omega_{1}\right)$ by subsets of $\omega$, and consider elements of $H\left(\omega_{1}\right)$ coded by consecutive $\omega$-sequences from $B$ in this fashion.

Suppose that $\delta$ is a limit of Woodin cardinals, and let $W$ denote the set of Woodin cardinals below $\delta$. Given a condition $(d, b)$ in $S L(V, \delta, W) \times A d d(1, \delta)$, we define a set $g_{(d, b)}$ and an ordinal $\eta_{(d, b)}$ such that either $g_{(d, b)}=\emptyset$ and $\eta_{(d, b)}=0$ or $g_{(d, b)}$ is a $V$-generic filter $g_{(d, b)}$ in $\mathbb{Q}_{<\eta_{(d, b)}}$ and $\eta_{(d, b)} \in d$. If $d$ is empty, so is $g_{(d, b)}$ (so $\eta_{(d, b)}=0$ ). Otherwise, $\eta_{(d, b)}$ and $g_{(d, b)}$ are defined as follows. Let $g_{0}=0$ and $\beta_{0}=0$, and, for each limit element $\gamma$ of $d$, if $g_{\eta}$ and $\beta_{\eta}$ are defined for each $\eta \in d \cap \gamma$, then let

$$
g_{\gamma}=\bigcup\left\{g_{\eta}: \eta \in d \cap \gamma\right\}
$$

and $\beta_{\gamma}=\sup \left\{\beta_{\eta}: \eta<\gamma\right\}$. If $g_{\gamma}$ is defined for each $\eta \in d$, then $g_{(d, b)}=g_{\max (d)}$ and $\eta_{(d, b)}=\max (d)$. For each $\gamma \in(d \cup\{0\}) \backslash \sup (d)$, if $g_{\gamma}$ and $\beta_{\gamma}$ are defined, let $\gamma^{+}$denote the least member of $d$ above $\gamma$. Then we choose $g_{\gamma^{+}}$and $\beta_{\gamma^{+}}$(or $\left.g_{(d, b)}\right)$ in the following way.

- If some consecutive $\omega$-sequence from $b$ above $\gamma \cup \beta_{\gamma}$ codes a $V$-generic filter $g \subset \mathbb{Q}_{<\gamma^{+}}^{V}$ such that $g \cap \mathbb{Q}_{<\gamma}^{V}=g_{\gamma}$, then let $g_{\gamma^{+}}$be the first filter of this type coded by a consecutive $\omega$-sequence from $b$ above $\gamma \cup \beta_{\gamma}$, and let $\beta_{\gamma^{+}}$ be supremum of the indices of this $\omega$-sequence.
- If there is no such consecutive $\omega$-sequence from $b$ above $\gamma \cup \beta_{\gamma}$, then let $g_{(d, b)}=g_{\gamma}$ and $\eta_{(d, b)}=\gamma$, and $g_{\gamma^{+}}$and $\beta_{\gamma^{+}}$are undefined.

If $\left(d^{\prime}, b^{\prime}\right) \leq(d, b)$ are conditions in $S L(V, \delta, W) \times A d d(1, \delta)$, then $g_{(d, b)} \subset g_{\left(d^{\prime}, b^{\prime}\right)}$ (and indeed the contruction just given for $(d, b)$ is an initial segment of the construction for $\left(d^{\prime}, b^{\prime}\right)$ ). The argument given in the proof of Theorem 3.1, using the fact that $d$ is an $V$-slow club, shows that $g_{(d, b)}$ is either $\emptyset$ or an $V$ generic filter for $\mathbb{Q}_{<\eta_{(d, b)}}^{V}$. We say that $(d, b)$ is complete if either $(d, b)$ is the empty condition or

$$
\eta_{(d, b)}=\sup (b)=\sup (d)
$$

and every real coded by a consecutive $\omega$-sequence from $b$ is in $V\left[g_{(d, b)}\right]$.
The following lemma shows how to extend $(d, b)$ in order to extend $g_{(d, b)}$.
Lemma 4.5. Suppose that

- $M$ is a model of ZFC;
- $\delta$ is a 2-Mahlo-Woodin cardinal in M;
- $\mathbb{R}^{*}$ is the set of reals of $V$;
- $M\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $M$;
- $W$ is the set of Woodin cardinals of $M$ below $\delta$;
- $(d, b)$ is a condition in $S L(M, \delta, W) \times \operatorname{Add}(1, \delta)$;
- $g$ is an $M$-generic filter for $\mathbb{Q}_{<\sup (d)}^{M}$ extending $g_{(d, b)}$ such that $a_{\gamma} \in g$ for every $\gamma \in d \backslash \eta_{(d, b)}$.

Then there exists a $b^{\prime}$ extending $b$ such that $g_{\left(d, b^{\prime}\right)}=g$.
Proof. Clearly, if $g_{(d, b)}=g$, we can let $b^{\prime}=b$. Otherwise, $\eta_{(d, b)} \in d \backslash\{\sup (d)\}$ and there is no consecutive $\omega$-sequence from $b$ above $\eta_{(d, b)} \cup\left\{\beta_{(d, b)}\right\}$ coding an $M$-generic filter $g \subset \mathbb{Q}_{<\gamma_{0}}^{M}$ such that $g \cap \mathbb{Q}_{<\eta_{(d, b)}}^{M}=g_{\eta_{(d, b)}}$, where $\gamma_{0}$ is the least element of $d$ above $\eta_{(d, b)}$. Let the first $\omega$-sequence of $b^{\prime}$ extending $b$ above $\eta_{(d, b)}$ be a real in $M\left[g \cap \mathbb{Q}_{<\gamma_{1}}^{M}\right]$ coding $g \cap \mathbb{Q}_{<\gamma_{0}}^{M}$, where $\gamma_{1}$ is the least element of $d$ above $\gamma_{0}$. Then $\beta_{\gamma_{0}}=\sup \left(b^{\prime}\right)$.

For each $\gamma \geq \gamma_{0}$ in $d$, let the first $\omega$-sequence of $b^{\prime}$ above $\gamma \cup \beta_{\gamma}$ be a real in $M\left[g \cap \mathbb{Q}_{<\gamma_{2}}^{M}\right]$ coding $g \cap \mathbb{Q}_{<\gamma_{1}}^{M}$, where $\gamma_{1}$ is the least member of $d$ above $\gamma$, and $\gamma_{2}$ is the least member of $d$ above $\gamma_{1}$. Then $\beta_{\gamma_{1}}=\left(\gamma \cup \beta_{\gamma}\right)+\omega$.

For limit members $\gamma$ of $d$ above $\gamma_{0}, \beta_{\gamma}$ is the supremum of $\left\{\beta_{\eta}: \eta<\gamma\right\}$.
Let these be the only elements of $b^{\prime} \backslash b$.
In the context we will be working in, the complete conditions are dense.

Lemma 4.6. Suppose that $\delta$ is a 2-Mahlo-Woodin cardinal in a model $M$ of $Z F C$, and $M\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $M$, where $\mathbb{R}^{*}$ is the set of reals in $V$. Let $(d, b)$ be a condition in $S L(M, \delta, W) \times \operatorname{Add}(1, \delta)$, where $W$ is the set of Woodin cardinals of $M$ below $\delta$. Then there is complete condition $\left(d^{\prime}, b^{\prime}\right)$ in $S L(M, \delta, W) \times \operatorname{Add}(1, \delta)$ below $(d, b)$.

Proof. By Lemma 4.5, we may assume that $\eta_{(d, b)}=\max (d)$. The set of reals coded by an $\omega$-sequence from $b$ is countable, so there is a real $x$ constructing all such reals. Let $\left\langle\gamma_{i}: i \leq \omega\right\rangle$ be a continuous, increasing sequence of Woodin cardinals of $M$ above $\max (d) \cup \sup (b)$ such that

1. $\gamma_{0}$ is the least Woodin cardinal $\gamma>\max (d) \cup \sup (b)$ such that

- $a \in \mathbb{Q}_{<\gamma}^{M} ;$
- the pair $\left\{g_{(d, b)}, x\right\}$ exists in a generic extension of $M$ by a partial order of cardinality less than $\gamma$;

2. $\gamma_{\omega}$ is the least 1-Mahlo-Woodin cardinal of $M$ greater than $\gamma_{0}$;
3. $d \cup\left\{\gamma_{i}: i<\omega\right\}$ is $M$-generic for $S C\left(\gamma_{\omega}, W \cap \gamma_{\omega}\right)$;

Then let $d^{\prime}=d \cup\left\{\gamma_{i}: i<\omega\right\}$ and let $b^{\prime}$ be a subset of $\gamma_{\omega}$ with the property that

- $b^{\prime}$ end-extends $b$;
- the first $\omega$-sequence of $b^{\prime}$ above $\max (d) \cup \sup (b)$ is a real $y_{0}$ coding an $M$ generic filter $g_{0} \subset \mathbb{Q}_{<\gamma_{0}}$ such that $g_{0} \cap V_{\eta_{(d, b)}}^{M}=g_{(d, b)}, a \in g_{0}, x \in M\left[g_{0}\right]$, and $y_{0}$ exists in a generic extension of $M$ by a partial order in $V_{\gamma_{1}}^{M}$;
- for all $i \in \omega$, the first $\omega$-sequence of $b^{\prime}$ above $\gamma_{i}$ is a real $y_{i+1}$ coding an $M$-generic filter $g_{i+1} \subset \mathbb{Q}_{<\gamma_{i+1}}$ such that $g_{i+1} \cap V_{\gamma_{i}}^{M}=g_{i}, y_{i} \in M\left[g_{i+1}\right]$, and $y_{i+1}$ exists in a generic extension of $M$ by a partial order in $V_{\gamma_{i+2}}^{M}$;
- all elements of $b^{\prime} \backslash b$ are of the the form $(\max (d) \cup \sup (b))+n$ or $\gamma_{i}+n$, for some $i, n$ in $\omega$.

Then $\left(d^{\prime}, b^{\prime}\right)$ is the desired condition.
Lemma 4.7. Suppose that

- $M$ is a model of ZFC;
- $\delta$ is a 2-Mahlo-Woodin cardinal in M;
- $\mathbb{R}^{*}$ is the set of reals in $V$;
- $M\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $M$;
- $W$ is the set of Woodin cardinals of $M$ below $\delta$;
- $(d, b)$ is a complete condition in $S L(M, \delta, W) \times \operatorname{Add}(1, \delta)$,
- $a$ is a condition in $\mathbb{Q}_{<\delta}^{M}$ below $a_{\eta_{(d, b)}}$.
- $\dot{d}$ and $\dot{b}$ are $\left(\left(\mathbb{Q}_{<\delta} \upharpoonright a\right) / \mathbb{Q}_{<\eta_{(d, b)}}\right)^{M\left[g_{(d, b)}\right]}$-names such that $(\dot{d}, \dot{b})$ is forced to be a complete condition in $S L(M, \delta, W) \times A d d(1, \delta)$ such that $g_{(\dot{d}, \dot{b})}=g_{(d, b)}$;

Then there exist continuous, increasing sequences

$$
d^{*}=\left\langle\gamma_{i}: i \leq \omega\right\rangle
$$

and

$$
d^{\prime}=\left\langle\gamma_{i}^{\prime}: i \leq \omega\right\rangle
$$

and sets $b^{*}, b^{\prime}$ and $g$ such that

- $\gamma_{0}=\gamma_{0}^{\prime}$ is a Woodin cardinal of $M$ greater than $\eta_{(d, b)}$ with $a \in \mathbb{Q}_{<\gamma_{0}}^{M}$;
- $\gamma_{\omega}=\gamma_{\omega}^{\prime}$ is the least 1-Mahlo-Woodin cardinal of $M$ above $\gamma_{1}$;
- $g$ is an M-generic filter contained in $\mathbb{Q}_{<\gamma_{0}}$ extending $g_{(d, b)}$ with a in $g$;
- $g$ decides all of $\dot{d}$ and $\dot{b}$;
- $d \cup d^{*}$ is $M$-generic for $S C\left(\gamma_{\omega}, W \cap \gamma_{\omega}\right)$;
- $\dot{d}_{g} \cup d^{\prime}$ is $M$-generic for $S C\left(\gamma_{\omega}, W \cap \gamma_{\omega}\right)$;
- $M\left[d \cup d^{*}\right]=M\left[\dot{d}_{g} \cup d^{*}\right]$;
- $\left(d \cup d^{*}, b^{*}\right)$ is a complete condition in $S L(M, \delta, W) \times \operatorname{Add}(1, \delta)$ below $(d, b)$;
- $\left(\dot{d}_{g} \cup d^{\prime}, b^{\prime}\right)$ is a complete condition in $S L(M, \delta, W) \times \operatorname{Add}(1, \delta)$ below $\left(\dot{d}_{g}, \dot{b}_{g}\right)$;
- $g_{\left(d \cup d^{*}, b^{*}\right)}=g_{\left(\dot{d}_{g} \cup d^{\prime}, b^{\prime}\right)}$ extends $g$.

Proof. Let $\gamma_{0}$ be the least Woodin cardinal $\gamma$ of $M$ such that

- $\gamma>\eta_{(d, b)}$;
- $a \in \mathbb{Q}_{<\gamma}^{M}$;
- the antichains deciding $\dot{d}$ and $\dot{b}$ are all predense in $\mathbb{Q}_{<\gamma}^{M}$

Let $g$ be an $M$-generic filter for $\mathbb{Q}_{<\gamma_{0}}^{M}$ such that

- $a \in g$;
- $g \cap \mathbb{Q}_{<\eta_{(d, b)}}^{M}=g_{(d, b)} ;$

Let $\gamma_{1}$ be the least $\gamma>\gamma_{0}$ which is a Woodin cardinal in $M$ such that the pair $\left\{d, \dot{d}_{g}\right\}$ is $M$-generic for a partial order in $V_{\gamma}^{M}$. Let $\gamma_{\omega}$ be the least 1-MahloWoodin cardinal of $M$ above $\gamma_{1}$. As in the proof of Lemma 4.3, there exist sequences $d^{*}=\left\langle\gamma_{i}: i<\omega\right\rangle$ and $d^{\prime}=\left\langle\gamma_{i}^{\prime}: i<\omega\right\rangle$ with supremum $\gamma_{\omega}$ such that

- $d \cup d^{*}$ is $M$-generic for $S C\left(\gamma_{\omega}, W \cap \gamma_{\omega}\right)$;
- $\dot{d}_{g} \cup d^{\prime}$ is $M$-generic for $S C\left(\gamma_{\omega}, W \cap \gamma_{\omega}\right)$;
- $M\left[d \cup d^{*}\right]=M\left[\dot{d}_{g} \cup d^{\prime}\right]$.

Let $g^{*}$ be a generic filter for $\mathbb{Q}_{\ll \gamma_{\omega}}^{M}$ extending $g$ such that $a_{\gamma} \in g^{*}$ for every $\gamma \in d^{*} \cup d^{\prime}$. Then by Lemma 4.5, there exist $b$ and $b^{\prime}$ such that

$$
g_{\left(d \cup d^{*}, b^{*}\right)}=g_{\left(\dot{d}_{g} \cup d^{\prime}, b^{\prime}\right)}=g^{*}
$$

as desired.
If $(D, B)$ is a filter contained in $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$, we let

$$
g_{(D, B)}=\bigcup\left\{g_{(d, b)} \mid(d, b) \in(D, B)\right\} .
$$

Lemma 4.8 follows from Lemmas 4.2, 4.5 and 4.6.
Lemma 4.8. Suppose that $\delta$ is (in $V$ ) a 2-Mahlo-Woodin cardinal. Let $V\left(\mathbb{R}^{*}\right)$ be a $\delta$-symmetric extension of $V$ and let $(D, B)$ be $V\left(\mathbb{R}^{*}\right)$-generic for

$$
S L(V, \delta, W) \times \operatorname{Add}(1, \delta) .
$$

Then $\delta=\omega_{1}^{V[D][B]}, g_{(D, B)}$ is a $V$-generic filter for $\mathbb{Q}_{<\delta}^{V}$ and $\mathbb{R}^{V\left[g_{(D, B)}\right]}=\mathbb{R}^{*}$.
The following is the main technical lemma for the proof of Theorem 4.10.
Lemma 4.9. Suppose that

- $\delta$ is a 2-Mahlo-Woodin cardinal in $V$;
- $G \subset \mathbb{Q}_{<\delta}$ is a $V$-generic filter;
- $(d, b)$ is a complete condition in $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$;
- $G \cap V_{\eta_{(d, b)}}=g_{(d, b)}$;
- $\mathcal{D}$ is a dense open subset of $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$ in $V\left(\mathbb{R}^{V[G]}\right)$.

Then there exist a complete condition $\left(d^{\prime}, b^{\prime}\right)$ in $(S L(V, \delta, W) \times \operatorname{Add}(1, \delta)) \cap \mathcal{D}$ extending (d,b) such that $\eta_{\left(d^{\prime}, b^{\prime}\right)}>\eta_{(d, b)}$ and $G \cap V_{\eta_{\left(d^{\prime}, b^{\prime}\right)}}=g_{\left(d^{\prime}, b^{\prime}\right)}$.

Proof. Let $\eta$ denote $\eta_{(d, b)}$. If the lemma fails, there exist a condition $a$ in

$$
\left(\left(\mathbb{Q}_{<\delta} \mid a_{\eta}\right) / \mathbb{Q}_{<\eta}\right)^{V\left[G \cap V_{\eta}\right]}
$$

(call this forcing $Q$ ) and $Q$-names $\dot{b}, \dot{d}$ and $\dot{\mathcal{D}}$ such that $a$ forces over the extension $V\left[G \cap V_{\eta}\right]$ that $\dot{\mathcal{D}}$ is a dense open subset of the partial order

$$
S L(V, \delta, W) \times \operatorname{Add}(1, \delta)
$$

of $V\left(\mathbb{R}^{V[\dot{G}]}\right)$ and $(\dot{d}, \dot{b})$ is a complete element of this partial order such that $G \cap V_{\eta}=g_{\left(\dot{d}_{G}, \dot{b}_{G}\right)}$ and such that for no complete condition $\left(d^{+}, b^{+}\right)$in

$$
(S L(V, \delta, W) \times A d d(1, \delta)) \cap \dot{\mathcal{D}}
$$

are $\left(d^{+}, b^{+}\right) \leq(\dot{d}, \dot{b})$ and $G \cap V_{\eta_{\left(d^{+}, b^{+}\right)}}=g_{\left(d^{+}, b^{+}\right)}$.
Let $d^{*}=\left\langle\gamma_{i}: i \leq \omega\right\rangle, d^{\prime}=\left\langle\gamma_{i}^{\prime}: i \leq \omega\right\rangle, b^{*}, b^{\prime}$ and $g$ be as in Lemma 4.7, with respect to $a$. Let $(D, B)$ be a $V\left(\mathbb{R}^{V[G]}\right)$-generic filter for

$$
S L(V, \delta, W) \times \operatorname{Add}(1, \delta)
$$

extending $\left(d \cup d^{*}, b^{*}\right)$, and let $H=g_{(D, B)}$. Then by Lemma 4.8, $\mathbb{R}^{V[G]}=\mathbb{R}^{V[H]}$. By the choice of $a, \dot{d}$ and $\dot{b}$, there is a dense open subset $\mathcal{D}^{\prime}$ of the partial order $S L(V, \delta, W) \times A d d(1, \delta)$ of $V\left(\mathbb{R}^{V[G]}\right)$ such that for no complete condition $\left(d^{+}, b^{+}\right)$in

$$
(S L(V, \delta, W) \times A d d(1, \delta)) \cap \mathcal{D}^{\prime}
$$

are $\left(d^{+}, b^{+}\right) \leq\left(\dot{d}_{g}, \dot{b}_{g}\right)$ and $H \cap V_{\eta_{\left(a^{+}, b^{+}\right)}}=g_{\left(d^{+}, b^{+}\right)}$.
Let $\left(D^{\prime}, B^{\prime}\right)$ be the filter in $S L(V, \delta, W) \times A d d(1, \delta)$ of $V\left(\mathbb{R}^{*}\right)$ formed by replacing $\left(d \cup d^{*}, b^{*}\right)$ with $\left(\dot{d}_{g} \cup d^{\prime}, b^{\prime}\right)$ (since $M\left[d \cup d^{*}\right]=M\left[\dot{d}_{g} \cup d^{\prime}\right]$, this replacement sends conditions to conditions). Then $\left(D^{\prime}, B^{\prime}\right)$ is $V\left(\mathbb{R}^{*}\right)$-generic, and, by the final three conclusions of Lemma 4.7, $g_{\left(D^{\prime}, B^{\prime}\right)}=H$. By the genericity of $\left(D^{\prime}, B^{\prime}\right)$, there exists an $\eta^{\prime}>\eta$ such that the restriction of $D^{\prime}$ and $B^{\prime}$ to $\eta^{\prime}$ is a complete pair $\left(d^{+}, b^{+}\right)$in $\mathcal{D}^{\prime}$, giving a contradiction.

Given a model $M$ of ZF and an ordinal $\delta$ of $M$, an $M$-fast club through $\delta$ is a club $C \subset \delta$ with the property that for all limit elements $\beta$ of $C, C \cap \beta$ is eventually contained in every club subset of $\beta$ in $M$.

Theorem 4.10. Suppose that $C H$ holds, $\delta$ is a measurable Woodin cardinal in $V$, and $\kappa>\delta$ is a Woodin cardinal. Suppose that $V\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $V$ and $(D, B)$ is $V\left(\mathbb{R}^{*}\right)$-generic for $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$ as defined in $V\left(\mathbb{R}^{*}\right)$. Then every $\Sigma_{2}^{2}$ sentence which holds in $V$ holds in $V[D][B]$.

Proof. Let $\exists X \subset \mathbb{R} \forall Y \subset \mathbb{R} \phi(X, Y)$ be a $\Sigma_{2}^{2}$ sentence which holds in $V$. Any two models of the form $V[D][B]$ are elementarily equivalent, so it suffices to show that $\exists X \subset \mathbb{R} \forall Y \subset \mathbb{R} \phi(X, Y)$ holds in some such model.

Let $a$ be a condition in $\mathbb{P}_{<\kappa}$ such that

- $a$ forces that $H \cap V_{\delta}$ will be $V$-generic for $\mathbb{Q}_{<\delta}$, where $H \subset \mathbb{P}_{<\kappa}$ is the generic filter;
- a forces that $j\left(\omega_{1}\right)=\delta$, where $j$ is the embedding induced by $H$;
- $a$ forces that $\mathcal{P}(\delta)^{V}$ has cardinality $\aleph_{1}$ in $V[H]$;
- $a$ forces that there exists a $V$-fast club contained in the 1-Mahlo-Woodin cardinals of $V$ below $\delta$.

The existence of such an $a$ from a measurable Woodin cardinal is shown in $[1,5]$, modulo the fact that any normal measure on $\delta$ concentrates on the 1-MahloWoodin cardinals of $V$ below $\delta$. Let $H \subset \mathbb{P}_{<\kappa}$ be a $V$-generic filter with $a \in H$. Let $j: V \rightarrow M$ be the induced embedding. Then $G=H \cap V_{\delta}$ is $V$-generic for $\mathbb{Q}_{<\delta}$. Let $j^{\prime}: V \rightarrow M^{\prime}$ be the embedding induced by $G$. Let $C$ be the $V$-fast club added by $H$. Let $\zeta$ be the least strongly inaccessible cardinal of $V$ above $\delta$. Let $\mathbb{R}^{*}$ be the reals of $M$. Then $V_{\zeta}[G]$ is in $M$, and $V_{\zeta}\left(\mathbb{R}^{*}\right)$ is a symmetric extension of $V_{\zeta}$.

Since $C \in M$ and $C$ is a $V$-slow club through the 1-Mahlo-Woodin cardinals of $V$ below $\delta, M$ can construct filters in $S L(V, \delta, W) \times A d d(1, \delta)$ below any condition and meeting any $\aleph_{1}$ many dense sets in $V\left(\mathbb{R}^{*}\right)$. Since $M$ and $V\left(\mathbb{R}^{*}\right)$ have the same $\omega_{1}$ (alternately, since measurable Woodin cardinals are 2-MahloWoodin), it follows that the forcing $S L(V, \delta, W) \times \operatorname{Add}(1, \delta)$ (over $V\left(\mathbb{R}^{*}\right)$ ) does not collapse $\delta$. Working in $M$, construct a $V_{\zeta}\left(\mathbb{R}^{*}\right)$-generic filter $(D, B)$ for $S L\left(V_{\zeta}, \delta, W\right) \times \operatorname{Add}(1, \delta)$ such that $g_{(D, B)}=G$. This can be done by Lemma 4.9, using $C$ to guarantee genericity at limit states, and using the fact that $\mathcal{P}(\delta)^{V}$ has cardinality $\aleph_{1}$ in $M$ to ensure genericity of the final filter.

Now let $X_{0}$ be a set of reals in $V$ such that $V \vDash \forall Y \subset \mathbb{R} \phi\left(X_{0}, Y\right)$. Then $j^{\prime}\left(X_{0}\right)=j\left(X_{0}\right)$, so $j\left(X_{0}\right) \in V[G] \subset V[D][B]$, and $M \models \forall Y \subset \mathbb{R} \phi\left(j\left(X_{0}\right), Y\right)$. Since $\mathcal{P}(\delta)^{V[D][B]} \subset M, V[D][B] \vDash \forall Y \subset \mathbb{R} \phi\left(j\left(X_{0}\right), Y\right)$, and thus the sentence $\exists X \subset \mathbb{R} \forall Y \subset \mathbb{R} \phi(X, Y)$ holds in $V[D][B]$.

It suffices in the statement of Theorem 4.10 (and the corollaries below) to let $\delta$ be a full Woodin cardinal (in the terminology of [1]) and let $\kappa$ a Woodin cardinal. The full Woodin cardinals constitute a measure one set for any normal measure on a measurable Woodin cardinal.

By Lemma 4.4, we get that all $\Sigma_{2}^{2}$ sentences holding in any extension by a partial ordering in $V_{\delta}$ hold in $V[D][B]$.

Corollary 4.11. Suppose that $\delta$ is a measurable Woodin cardinal in $V$, and $\kappa>\delta$ is a Woodin cardinal. Suppose that $V\left(\mathbb{R}^{*}\right)$ is a $\delta$-symmetric extension of $V$ and $(D, B)$ is $V\left(\mathbb{R}^{*}\right)$-generic for $S L(V, \delta, W) \times A d d(1, \delta)$ as defined in $V\left(\mathbb{R}^{*}\right)$, where $W$ is the set of Woodin cardinals of $V$ below $\delta$. Then if $\phi$ is a $\Sigma_{2}^{2}$ sentence and $C H+\phi$ holds in a forcing extension of $V$ by a partial order in $V_{\delta}$, then $\phi$ holds in $V[D][B]$.

By Lemma 4.2, we get the following.
Corollary 4.12. Suppose that $\delta$ is a measurable Woodin cardinal in $V$, and $\kappa>\delta$ is a Woodin cardinal. Let $(D, B)$ be $V$-generic for $S C(\delta, W) * \operatorname{Add}(1, \delta)$, where $W$ is the set of Woodin cardinals of $V$ below $\delta$. Then if $\phi$ is a $\Sigma_{2}^{2}$ sentence and $C H+\phi$ holds in a forcing extension of $V$ by a partial order in $V_{\delta}$, then $\phi$ holds in $V[D][B]$.

Theorem 4.10 and Corollary 4.11 continue to hold when a predicate for a universally Baire set of reals is added to the language. Showing this requires only that, in the proof of Theorem 4.10, if $A$ is universally Baire set of reals
in $V$, then $j(A)$ is equal to the reinterpretation of $A$ in $V[D][B]$. This in turn follows from the following theorem of Steel (proofs appear in [1, 5]).

Theorem 4.13. Let $\lambda$ be a strongly inaccessible cardinal and let $T$ be a a $\lambda^{+}$weakly homogeneous tree. If $S$ is the Martin-Solovay tree for the complement of the projection of $T$ and $k$ is an elementary embedding derived from forcing with $\mathbb{Q}_{<\lambda}$ then the corresponding generic embedding $k: V \rightarrow M$ satisfies $k(S)=S$.

Corollary 4.14. Suppose that $\delta$ is a measurable Woodin cardinal, $A$ is set of reals such that $A$ and $\mathbb{R} \backslash A$ are $\delta^{+}$-weakly homogeneously Suslin and $\kappa>\delta$ is a Woodin cardinal. Suppose that $(D, B)$ is $V$-generic for $S L(V, \delta, W) * \operatorname{Add}(1, \delta)$, where $W$ is the set of Woodin cardinals of $V$ below $\delta$. Then every $\Sigma_{2}^{2}$-sentence with an additional predicate for $A$ which can be forced to hold by a partial order in $V_{\delta}$ holds in $V[D][B]$.

It is not possible to add a predicate for $N S_{\omega_{1}}$ to the language in Theorem 4.10. One way to see this is given in [6].

A natural question is whether the forcing $\operatorname{Add}(1, \delta)$ is necessary to achieve $\Sigma_{2}^{2}$-maximality.

## References

[1] I. Farah, P.B. Larson, Absoluteness for universally Baire sets and the uncountable I, Set Theory and its Applications, Quaderni di Matematica 17 (2006), 47-92
[2] T. Jech, Set Theory, Springer-Verlag, Berlin, 2003
[3] A. Kanamori, The Higher Infinite. Large cardinals in set theory from their beginnings, 2nd edition, Springer Monographs in Mathematics, 2003
[4] K. Kunen, Set Theory. An introduction to independence proofs, North Holland, 1983
[5] P.B. Larson, The Stationary Tower. Notes on a course by W. Hugh Woodin, American Mathematical Society University Lecture Series, vol. 32, 2004
[6] P.B. Larson, S. Shelah, The stationary set splitting game, Math. Logic Quarterly 54 (2008) 2, 187-193

Department of Mathematics and Statistics
Miami University
Oxford, Ohio 45056
USA
ketchero@muohio.edu
larsonpb@muohio.edu

Department of Mathematics
University of Florida
Gainesville, FL 32611
zapletal@math.ufl.edu


[^0]:    *Research supported in part by NSF grant DMS-0401603. The proof of Woodin's $\Sigma_{2}^{2}$ maximality theorem given in this paper is reconstructed from a conversation between Woodin and the second author at the Mathematisches Forschungsinstitut Oberwolfach Set Theory meeting in December 2005.
    ${ }^{\dagger}$ Research supported in part by NSF grant DMS-0300201.

