
Strong measure zero sets in Polish groups∗

Michael Hrušák †
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Abstract

In the context of arbitrary Polish groups, we investigate the Galvin–
Mycielski–Solovay characterization of strong measure zero sets as those
sets for which a meager collection of right translates cannot cover the
whole group.

1 Introduction

Emile Borel defined the collection of strong measure zero sets of reals:

Definition 1.1. A set A ⊂ R is a strong measure zero set if for every sequence
〈εn : n ∈ ω〉 of positive real numbers there are intervals In ⊂ R of respective
legths εn such that A ⊂

⋃
n In.

It is clear that every countable set of reals has strong measure zero. The failure
of the effort to produce an uncountable strong measure zero set lead Borel to
the following conjecture:

Conjecture 1.2. (Borel conjecture) The strong measure zero sets are exactly
the countable sets.

Today we know [8] that under the Continuum Hypothesis there are uncountable
strong measure zero sets, and in a certain model of ZFC (the Laver model) there
are no uncountable strong measure zero sets. Thus, the Borel conjecture is not
decidable in ZFC set theory. One interesting feature of strong measure zero sets
is the following characterization, proved by Galvin, Mycielski, and Solovay:
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Fact 1.3. [3] A set A ⊂ R is strong measure zero if and only if for every meager
set M ⊂ R, A+M 6= R.

The topic of this paper is a generalization of strong measure zero sets to
arbitrary Polish groups and the verification of the above characterization in this
more general context. One should remark right away that if Borel conjecture
holds, then all strong measure zero sets in any given Polish group are countable
and the GMS characterization holds automatically. Thus, one is interested only
in the context of the Continuum Hypothesis, which is in a sense opposite of that
of Borel conjecture.

Definition 1.4. (ZFC+CH) A Polish group G is GMS if for every set A ⊂ G,
A is strong measure zero if and only if for every meager set M ⊂ G, A ·M 6= G.

The choice of the Continuum Hypothesis context is critical also because of the
syntactical complexity of the GMS property. The statement “G is GMS” is
Π2

1(G), and as such is decided in the Ω-logic by the Continuum Hypothesis.
Also, if the decision is positive under CH, it is positive already in ZFC [7]; in
other words, under CH there are as many non-GMS groups as possible.

An obvious question is whether there is a restatement of the above definition
which would make an equivalent sense even in the context of ZFC. There is a
natural conjecture which, if true, would identify the class of GMS groups with
a classical class of groups:

Conjecture 1.5. (ZFC+CH) A Polish group G is GMS if and only if it is
locally compact.

The right-to-left implication has been known [2, Section 534], [6, 4]. We inves-
tigate the problematic left-to-right implication and confirm it in two extensive
classes of groups:

Theorem 1.6. The conjecture holds in the class of groups with bi-invariant
metric, and in the class of closed subgroups of S∞.

This greatly extends the result of [4], where it is proved that the Baer–Specker
group Zω is not GMS.

We use the set theoretic notational standard of [5]. Let G be a group. Unless
G = R, we denote the group operation by ·. If g ∈ G and A ⊂ G then gA denotes
the set {gh : h ∈ A}; similar usage prevails for right translates and inverses of
subsets of G.

2 Strong measure zero sets in arbitrary Polish
groups

In this section, we define the strong measure zero sets in arbitrary Polish groups
and verify their basic properties.
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Definition 2.1. Let G be a Polish group. A set A ⊂ G is left strong measure
zero, lsmz if for every sequence 〈Un : n ∈ ω〉 of nonempty open subsets of the
group there are elements gn ∈ G for n ∈ ω such that A ⊂

⋃
n gnUn.

Theorem 2.2. Let G be a Polish group.

1. The left strong measure zero sets form a bi-invariant σ-ideal;

2. if the Borel conjecture holds, then the left strong measure zero sets are
exactly the countable sets;

Proof. For (1), it is easy to verify that the left strong measure zero sets form a
σ-ideal. Suppose A =

⋃
nAn and for every n ∈ ω the set An ⊂ G is lsmz. To

verify that A is lsmz, suppose that Um for m ∈ ω are nonempty open subsets
of the group. Let {bn : n ∈ ω} be a partition of ω into countably many infinite
sets, and use the lsmz property of each set An to find group elements gm for
m ∈ ω such that for every n ∈ ω, An ⊂

⋃
m∈bn gmUm. Then A ⊂

⋃
m∈ω gmUm.

To verify the invariance, suppose that A ⊂ G is a left strong measure zero
set and g ∈ G is an arbitrary element. To see that gA is lsmz, suppose that
〈Un : n ∈ ω〉 is a sequence of nonempty open subsets of the group. As A is lsmz,
there are elements gn ∈ G such that A ⊂

⋃
n gnUn, and then gA ⊂

⋃
n ggnUn.

This confirms that the set gA is lsmz. To verify that the set Ag is lsmz, suppose
that 〈Un : n ∈ ω〉 is a sequence of nonempty open subsets of the group. As
A is lsmz, there are elements gn ∈ G such that A ⊂

⋃
n gnUng

−1. Then,
Ag ⊂

⋃
n gnUn, and so the set Ag is lsmz as required.

For (2), recall the result of Carlson: the Borel conjecture implies that sep-
arable strong measure zero metric spaces must be countable. See [1, Theorem
3.2].

The following two theorems record what is known regarding the GMS char-
acterization of left strong measure zero sets in general Polish groups.

Theorem 2.3. Let G be a Polish group.

1. Whenever A ⊂ G is a set and A · C 6= G for every nowhere dense set
C ⊂ G, then A is lsmz;

2. if G is locally compact and A ⊂ G is a lsmz set, then A ·C 6= G for every
meager set C ⊂ G.

Proof. For (1), fix a set A ⊂ G. Let 〈Un : n ∈ ω〉 be a sequence of nonempty
open subsets of G. Let 〈gn : n ∈ ω〉 be a sequence of elements of the group
such that the set

⋃
n gnUn ⊂ G is open dense. Let C = (G \

⋃
n gnUn)−1;

as the inverse map is a self-homeomorphism of G, the set C ⊂ G is closed
nowhere dense. Now, since A ·C 6= G, there is a group element g ∈ G such that
g /∈ A · C. This means that for every h ∈ A, g /∈ h · C, so h /∈ g · C−1, in other
words h ∈

⋃
n g · gnUn. Thus, A ⊂

⋃
n g · gnUn and the set A ⊂ G is lsmz.

For (2), see [6] or [2, Section534] or [4].
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The attempts to prove the converse to Theorem 2.3(1) for Polish groups
which are not locally compact are the starting point of the current paper. To
violate the converse, we introduce a special type of nowhere dense set.

Definition 2.4. [4] Let G be a Polish group. A nonempty set C ⊂ G is
anti-GMS if it is nowhere dense and for every sequence 〈Un : n ∈ ω〉 of open
neighborhoods of 1 there is a sequence 〈gn : n ∈ ω〉 of elements of G such that
for every g ∈ G, the set g ·

⋃
n gn · Un is dense in C.

Theorem 2.5. (ZFC+CH) Let G be a Polish group. If there is an anti-GMS
set in G then the group G is not GMS.

Proof. Let C ⊂ G be an anti-GMS set; passing to a closure if necessary, we
may assume that it is closed. We will construct a lsmz set A ⊂ G such that
A · C−1 = G.

Let {Uαn : n ∈ ω, α ∈ ω1} be an enumeration of all ω-sequences of nonempty
basic open subsets of G. Since C is an anti-GMS set, we can choose elements
{gαn : n ∈ ω, α ∈ ω1} such that for every α ∈ ω1 the set

⋃
n g

α
nU

α
n is dense in C.

Let {hα : α ∈ ω1} be an enumeration of the group G. For each ordinal α ∈ ω1

we will find elements gα ∈ G and kα ∈ C so that

• if β < α then gα ∈
⋃
n g

β
nU

β
n ;

• gα · k−1α = hα.

Let A = {gα : α ∈ ω1}. The first item ensures that A is a lsmz set. The second
item shows that G = A · C−1, and this will complete the proof of the theorem.

To construct gα, kα, note that for every β ∈ α, the sets
⋃
n h
−1
α gβnU

β
n are

open dense in C. Since there are only countably many such sets, there is some
kα ∈ C which belongs to all of them. Let gα = hα · kα. By the choice of kα, for
every β ∈ α it is the case that gα ∈

⋂
β∈α

⋃
n g

β
nU

β
n as desired. Finally, gαk

−1
α =

hαkαk
−1
α = hα as desired in the second item and the proof is complete.

We do not know if the converse to Theorem 2.5 holds. Nevertheless, the fail-
ure of GMS property in Polish groups in this paper is always obtained through a
construction of an anti-GMS set. Note that if a set C ⊂ G is anti-GMS then its
closure is anti-GMS as well. Thus, the existence of anti-GMS set is a projective
statement.

As a final remark in this section, in Definition 2.1 one multiplies by the group
elements from the left. It is also possible to consider a similar definition with
multiplication from the right: a set A ⊂ G is right strong measure zero, rsmz
if for every sequence 〈Un : n ∈ ω〉 of nonempty open subsets of the group there
are elements gn ∈ G for n ∈ ω such that A ⊂

⋃
n Ungn. We will not work on

the difference between the left and right strong measure zero sets beyond the
following basic theorem.

Theorem 2.6. Let G be a Polish group.

1. For every set A ⊂ G, A is lsmz if and only if A−1 ⊂ G is rsmz;
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2. if G admits a bi-invariant metric or the Borel conjecture holds then the
lsmz and rsmz sets coincide;

3. if G = S∞ and the continuum hypothesis holds, then the ideals of lsmz
and rsmz sets are not the same.

Proof. For the left-to-right directon of (1), suppose that A is lsmz. To verify the
rsmz of A−1, suppose that 〈Un : n ∈ ω〉 is a sequence of nonempty open subsets
of the group. By the lsmz property of the set A, there is a sequence 〈gn : n ∈ ω〉
of elements of the groups such that A ⊂

⋃
n gnU

−1
n . Then, A−1 ⊂

⋃
n Ung

−1
n ,

verifying the rsmz of A−1. The right-to-left implication is similar.
For (2), if d is a bi-invariant metric on the grup G, then both left and right

shfts of d-balls of a fixed radius ε > 0 are exactly the d-balls of radius ε. In the
definition of both lsmz and rsmz sets, shrinking the sets Un if necessary we may
assume that they are d-balls, and then the definitions of rsmz and lsmz coincide.
If the Borel conjecture holds then both the lsmz and rsmz ideal coincide with
the σ-ideal of countable sets.

For (3), in view of (1) it is enough to find a set A ⊂ S∞ such that A is left
strong measure zero while A−1 is not. Let 〈xα : α ∈ ω1〉 be an enumeration of
increasing functions in ωω and let 〈yα : α ∈ ω1〉 be an enumeration of Sω∞. By
transfinite induction on α we will produce points zα ∈ Sω∞ and gα ∈ S∞ such
that

1. for every β ∈ α, gα ∈
⋃
n[zβ(n) � xβ(n)] and g−1α /∈

⋃
n[y−1α (n) � n].

Once this is done, it is clear that the set A = {gα : g ∈ ω1} is strong left measure
zero while the set A−1 is not. An additional inductive hypothesis on the points
zα will be the following:

2. Let s be a finite injection from ω to ω. Let m < k be the first two numbers
not in the range of s. We require that there will be a set a ⊂ ω of size at
least k + 1 such that the finite injections zα(n) � xα(n) for n ∈ a extend
s, they all have m in their range, neither has k in their range, and their
preimages of m are pairwise distinct.

Now, suppose that zβ , xβ have been found for β ∈ α. It is easy to find zα
satisfying (2); this does not use the inductive assumption at all. To construct
the point gα, choose an enumeration {βi : i ∈ ω} = α. By induction on i ∈ ω
find ni ∈ ω such that the finite injections si = zβi

(ni) � xβi
(ni) form a chain

with respect to inclusion, and writing mi for the smallest number not in the
range of si, mi ∈ rng(si+1) and [si]

−1 ∩
⋃
n≤mi

[y−1α (n) � n] = 0. Once this is
done, the point xα =

⋃
i si is as required.

To perform the induction on i, start with s−1 = 0. Suppose si has been
constructed. Let m < k be the first two numbers not in the range of si. Use
the induction hypothesis (2) at βi and si to find a number ni ∈ ω such that the
injection si+1 contains m in its range, does not contain k in its range, and for
every m < n < k, the preimages of m under yα(n) and si+1 are distinct. Then,
si+1 works as desired.
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3 Submeasures on groups

A useful tool for packaging the proof of Theorem 1.6 in the case of groups with
bi-invariant metric is the concept of left invariant submeasure on a topological
group. Recall that a submeasure µ on a Polish space X is outer regular if for
every set A ⊂ X, µ(A) = inf{µ(O) : A ⊂ O,O open}. The submeasure µ is
non-atomic if µ({x}) = 0 for every point x ∈ X.

Theorem 3.1. Let G be an uncountable Polish group. There is a left invariant,
outer regular, countably subadditive, nonatomic, nonzero submeasure on G.

Proof. It will be enough to produce a local inclusion-decreasing basis 〈Un : n ∈
ω〉 at 1 such that whenever m ∈ ω is a number and an ⊂ G are sets of respective
size n for all n > m, then Um is not a subset of

⋃
n>m an ·Un. Once this is done,

define the submeasure µ by setting µ(A) = inf{Σi1/ni : 〈gi, ni : i ∈ ω〉 are such
that A ⊂

⋃
i giUni}. The requested properties of µ follow from the definition.

The only important point is that µ(Un) = 1/n, in particular open sets have
nonzero µ-mass. This, however, follows from the initial properties of the local
basis.

To construct the local basis, choose a left invariant metric d and a complete
metric e for the group G. By induction find the open sets Un ⊂ G together with
sets bn ⊂ Un of size n+ 1 such that

• writing εn for the d-diameter of Un+1, the points in bn are d− 3εn distant
from each other and also from the complement of Un;

• for every m < n and every choice gi ∈ bi for m < i < n the sets
∏
m<i<n gi·

Un have e-diameter < 1/n.

To check the desired properties of the basis, suppose that m ∈ ω is a number
and an ⊂ G are sets of respective size n for all n > m. By induction on n > m
choose elements gn ∈ bn so that the set

∏
m<i<n giUn is disjoint from all sets

gUn for g ∈ an. This is possible since the metric d is left-invariant and so each
set gUn for g ∈ an intersects at most one of the sets

∏
m<i<n gi ·h ·Un for h ∈ bn.

The closures of the sets
∏
m<i<n giUn for n < m form an inclusion-decreasing

sequence with e-diameter tending to zero and so their intersection is nonempty
by the completeness of the metric e. The point in their intersection belongs to
Um but not to the set

⋃
n>m an · Un. This completes the proof.

It is entirely natural to consider left invariant submeasures in conjunction
with left strong measure zero sets, as the following theorem, due to Jan Greb́ık,
shows. Lsmz sets are in a sense exactly the universally left invariant submeasure
zero sets:

Theorem 3.2. Let G be a Polish group, and A ⊂ G be a set. The following
are equivalent:

1. A is lsmz;
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2. for every left invariant, outer regular, countably subadditive, nonatomic
submeasure µ on G, µ(A) = 0.

Proof. To see why (1) implies (2), suppose that A is lsmz, µ is a left invariant
submeasure on G, and ε > 0 is a real number. To show that µ(A) < ε, just
use the assumption that µ is nonatomic to find open neighborhoods Un ⊂ G
of the unit for n ∈ ω such that Σnµ(Un) < ε. Use the assumption that A
is lsmz to find group elements gn ∈ G for n ∈ ω such that A ⊂

⋃
n gn · Un.

Finally use the countable subadditivity and invariance of µ to conclude that
µ(A) ≤ Σnµ(gn · Un) < ε as desired.

To see why (2) implies (1), suppose that (2) is satisfied and Un ⊂ G for
n ∈ ω are nonempty open sets; we must find group elements gn ∈ G for n ∈ ω
such that A ⊂

⋃
n gn · Un. Thinning out the sets Un and shifting them on

the left, we may assume that they are all neighborhoods of the unit and form
a basis at the unit. Find numbers ni ∈ ω for i ∈ ω such that ni+1 > 2ni,
write O = {Ani : i ∈ ω} and define a submeasure µ on the group G by setting
w(An0) = 1 and w(Ani+1 = 1/ni and µ(B) = inf{Σjw(Vj) : Vj ∈ O and there
are group elements gj ∈ G such that B ⊂

⋃
j gj · Vj}. It is immediate that

this is a left invariant, countably subadditive etc. submeasure on G. By (2),
µ(A) < 1 holds, and so there are sets Vj ∈ O and group elements gj such that
A ⊂

⋃
j gj · Vj and moreover, Σjw(Vj) < 1. The latter inequality shows that

for every i ∈ ω, the set Uni+1 occurs fewer than ni-many times among the Vj ’s,
and the set Un0

does not occur at all. The indexes ni+1 increase so fast that it
is possible to find sets Wj ∈ {Un : n ∈ ω} for j ∈ ω such that Wj ⊃ Vj and each
Un occurs at most once among the Wj ’s. But then, A ⊂

⋃
j gj ·Wj and the set

A is lsmz as desired.

4 Groups with bi-invariant metric

Theorem 4.1. (ZFC+CH) Suppose that G is a non-locally compact Polish
group with a bi-invariant metric. Then G is not GMS.

Proof. By Theorem 2.5 it is enough to construct an anti-GMS set in the group
G. Let µ be a left invariant countably subadditive diffuse submeasure on G.
We will build a closed nowhere dense set C ⊂ G such that whenever O ⊂ G is
an open set with nonempty intersection with C, there are nonempty open sets
{Qm : m ∈ ω}, all subsets of O, all left translates of each other, such that the
numbers µ(Qm \ C) tend to zero as m tends to infinity. Such a set C ⊂ G will
be anti-GMS.

To see this, choose a countable collection of open neighborhoods {Un : n ∈ ω}
of the unit; shrinking if necessary, we may assume that their diameters tend to
zero. Choose a pairwise disjoint collection {aO : O ⊂ G basic open} of infinite
subsets of ω. For each O such that O ∩ C 6= 0 find an open neighborhood
WO ⊂ G of the unit such that O contains infinitely many left translates of WO

such that the µ-masses of their intersections with the complement of C tend to
0. Removing finitely many elements from aO if necessary, we may find an open
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neighborhood VO of the unit such that for each n ∈ aO VO · Un ⊂ WO. Now,
pick elements gn, hn ∈ G for n ∈ aO such that hnWO ⊂ O and µ(hnWO \ C) <
µ(Un), and G =

⋃
n∈aO hnVOg

−1
n . This is possible since there is a bi-invariant

compatible metric. We claim that the group elements {gn : n ∈
⋃
O aO} work

as desired.
Indeed, if g ∈ G is an arbitrary element and O ⊂ G is a basic open set

with nonempty intersection with C, there must be a number n ∈ aO such that
g ∈ hnVOg−1n , or in other words g · gn ∈ hnVO. Then g · gnUn ⊂ hnVOUn ⊂
hnWO ⊂ O. Now, µ(hnWO \C) < µ(Un) and so C ∩O∩g ·gnUn 6= 0 as desired.

The construction of the nowhere dense closed set C ⊂ G is performed by a
routine induction. Let 〈Ok : k ∈ ω〉 be an enumeration of a basis for the group
G. By induction on k ∈ ω build sets Pk ⊂ G and countable sets Ak such that

1. Pk is an increasing sequence of open subsets of G and Ok ∩ Pk+1 6= 0;

2. Ak is a countable set of pairs of the form 〈Q, ε〉 such that Q ⊂ G is open,
ε > 0. No point of G belongs to more than k many sets mentioned in Ak;

3. whenever 〈Q, ε〉 ∈ Ak then µ(P̄k+1 ∩Q \ P̄k) < 2−kε. Moreover, if k is the
smallest such that 〈Q, ε〉 ∈ Ak then P̄k ∩Q = 0.

4. either (a) Ok ⊂ Pk+1, or (b) the set Ak+1 contains an infinite collection of
open sets, all left translates of each other, all subsets of Ok, paired with
real numbers tending to zero.

In the end, let C = G \
⋃
k Pk. By the first item, this is a closed nowhere dense

set. By the third item, whenever 〈Q, ε〉 ∈
⋃
k Ak then µ(Q \ C) < ε. Now, if

Ok is a basic open set with nonempty intersection with C, then (b) must have
occurred at k in the last item, and so the set Ok contains an infinite collection
of open subsets with the required properties.

To perform the induction, start with P0 = A0 = 0. If Pk has been con-
structed, the next step divides into two cases, corresponding to (a) and (b) of
the last item. Either Ok ⊂ P̄k, in which case let Ak+1 = Ak and Pk+1 = Pk∪Ok,
and proceed to k + 1. If Ok 6⊂ P̄k, find disjoint open sets R,S ⊂ Ok \ P̄k. Use
the second item to find a nonempty open subset R′ ⊂ R which is either disjoint
from or a subset of every open set mentioned in Ak. Since the submeasure
µ is diffuse, there is a nonempty open set R′′ ⊂ R′ with µ(R̄′′) so small that
Pk+1 = Pk ∪ R′′ is going to satisfy the demands of the third item for all pairs
〈Q, ε〉 ∈ Ak with R′ ⊂ Q. Finally, use the fact that the set S is not compact
to find infinitely many balls of equal diameter with pairwise disjoint closures
inside S, and include them all in Ak+1, paired with some real numbers tending
to zero.

5 Closed subgroups of S∞

Theorem 5.1. (ZFC+CH) Let G be a non-locally-compact, closed subgroup of
S∞. Then G is not GMS.
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Proof. By Theorem 2.5, it is enough to construct an anti-GMS set C ⊂ G. By
the lack of local compactness, there is an infinite set a ⊂ ω such that for every
n ∈ a there are infinitely many m such that there is g ∈ G for which g � n is
the identity and g(n) = m. For numbers n < m both in a define Rn,m to be
the relation on G connecting g, h if g(n) /∈ rng(h � m), and h(n) /∈ rng(g � m).
Note that the relation Rn,m is left invariant.

Let B be the set of all finite injections u from ω to ω such that dom(u) ∈ a
and there is g ∈ G with u ⊂ g. For u ∈ B write [u] = {g ∈ G : u ⊂ g}.

Claim 5.2. Let n < m be numbers in a and u ∈ B is of size n. There are
g, h ∈ G which both extend u and such that g Rn,m h holds.

Proof. Since the relation Rn,m is left invariant, it is enough to prove this for
u equal to the identity function on n. Let gk : k ∈ ω be elements of G which
up to n are equal to the identity, and gk(n) for k ∈ ω are pairwise distinct
numbers. Thinning the collection if necessary, we may assume for every number
l ∈ [n,m) the numbers gk(l) are either pairwise distinct or all equal. Since the
gk’s are injections, this means that for each k0 ∈ ω the set of all k1 such that
gk0(n) ∈ rng(gk1 � [n,m)), is finite. Thus, for every number k large enough the
pair g = g0 and h = gk will work as required.

Let A ⊂ B be a dense set such that

• the ranges of injections in A are linearly ordered by inclusion;

• whenever u ∈ B has no initial segment in A then for every m it has an
extension v ∈ B with no initial segment in A and such that m ∈ rng(v).

It is easy to construct such a set A by a bookkeeping argument. Let C =
G \

⋃
k[sk]; this is a closed nowhere dense subset of C. Note that if u ∈ B then

C ∩ [u] = 0↔ ∃s ∈ A s ⊆ u. We claim this set C works.
Suppose that b ⊂ a is an infinite set. We must find group elements gn ∈ G

for n ∈ b such that for every g ∈ S∞ g ·
⋃
n[gn � n] ∩ C is dense in C. Just

use the claim to find the group elements so that for every u ∈ B of length some
k ∈ a there are numbers n0 < n1 ∈ b such that both gn0 , gn1 extend u and
gn0 Rk,n1 gn1 holds. We claim that {gn : n ∈ b} works.

Suppose that g ∈ G is an element and v ∈ B is such that C ∩ [v] 6= 0. Let
k = dom(v) and u = g−1 · v, and find numbers n0 < n1 in b such that gn0

, gn1

extend u and are Rk,n1
-related. We claim that either [g ·gn0

� n0] or [g ·gn1
� n1]

must have nonempty intersection with C–this will suffice as both of these sets
are subsets of [v]. If this is not the case, there must be injections s0, s1 ∈ A
such that s0 ⊆ g · gn0

� n0 and s1 ⊆ g · gn1
� n1. However, neither s0, s1 can

be a subset of v since C ∩ [v] 6= 0, so their respective ranges must contain the
numbers g · gn0

(k) and g · gn1
(k) which do not belong to the range of the other

sequence. This contradicts the assumption that the ranges of s0, s1 are linearly
ordered by inclusion.
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