Dynamics of Polish groups, submeasures, and a new concentration of measure

Sławomir Solecki

Cornell University

Research supported by NSF grant DMS-1800680

February 2020

Joint work with F.M. Schneider

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Polish groups and their dynamics

Polish groups and their dynamics

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Polish groups and their dynamics

A topological group G is **Polish** if its group topology completely metrizable and separable.

-Polish groups and their dynamics

A topological group G is **Polish** if its group topology completely metrizable and separable.

Examples:

- the **unitary** group of the separable infinite dimensional Hilbert space;
- the group of all (classes of) measure preserving transformations of a Borel probability measure space;
- the **isometry** group of a Polish metric space;
- the **homeomorphism** group of a compact second countable space;
- the **automorphism** group of a countable (model theoretic) structure.

Polish groups and their dynamics

- G a topological group
- A G-flow is a continuous action of G on a compact space.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

A G-flow is **minimal** if each orbit is dense.

Polish groups and their dynamics

- ${\cal G}$ a topological group
- A G-flow is a continuous action of G on a compact space.
- A G-flow is **minimal** if each orbit is dense.
- **Ellis**: There exists a unique **universal minimal flow** M(G)

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

-Polish groups and their dynamics

- ${\cal G}$ a topological group
- A G-flow is a continuous action of G on a compact space.
- A G-flow is minimal if each orbit is dense.

Ellis: There exists a unique **universal minimal flow** M(G), that is, M(G) is unique such that each minimal *G*-flow is a continuous *G*-equivariant image of M(G).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polish groups and their dynamics

A topological group G is **extremely amenable** if each G-flow has a G-fixed point.

In other words, G is extremely amenable iff M(G) is a one-point flow.

-Polish groups and their dynamics

A topological group G is **extremely amenable** if each G-flow has a G-fixed point.

In other words, G is extremely amenable iff M(G) is a one-point flow.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Veech: No non-compact locally compact group is extremely amenable.

-Polish groups and their dynamics

A topological group G is **extremely amenable** if each G-flow has a G-fixed point.

In other words, G is extremely amenable iff M(G) is a one-point flow.

Veech: No non-compact locally compact group is extremely amenable.

G is **amenable** if each G-flow has a G-invariant, regular, Borel probability measure.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Polish groups and their dynamics

The first example of an extremely amenable group

Polish groups and their dynamics

The first example of an extremely amenable group

Herer–Christensen: If ϕ is a **pathological** submeasure, then $L_0(\phi, \mathbb{R})$ is extremely amenable.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Used methods of functional analysis.

Polish groups and their dynamics

Two general methods for proving extreme amenability

-Polish groups and their dynamics

Two general methods for proving extreme amenability

(A) Ramsey theory

Pestov: The automorphism group of $(\mathbb{Q}, <)$ is extremely amenable.

Kechris–Pestov–Todorcevic: There is an exact connection between extreme amenability of closed subgroups of S_{∞} and Ramsey theory.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polish groups and their dynamics

Two general methods for proving extreme amenability

(A) Ramsey theory

Pestov: The automorphism group of $(\mathbb{Q}, <)$ is extremely amenable.

Kechris-Pestov-Todorcevic: There is an exact connection between extreme amenability of closed subgroups of S_{∞} and Ramsey theory.

(B) Concentration of measure

Gromov–Milman: The unitary group of a separable, infinite dimensional Hilbert space is extremely amenable.

Polish groups and their dynamics

Two general methods for proving extreme amenability

(A) Ramsey theory

Pestov: The automorphism group of $(\mathbb{Q}, <)$ is extremely amenable.

Kechris–Pestov–Todorcevic: There is an exact connection between extreme amenability of closed subgroups of S_{∞} and Ramsey theory.

(B) Concentration of measure

Gromov–Milman: The unitary group of a separable, infinite dimensional Hilbert space is extremely amenable.

Glasner, Pestov: If ϕ is a **measure** and *G* is an **amenable** locally compact Polish group, then $L_0(\phi, G)$ is extremely amenable.

Submeasures and their classification

Submeasures and their classifications

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 - のへで

Submeasures and their classification

Submeasures

Submeasures

Submeasures and their classification

- Submeasures

 $\mathcal{C} =$ an algebra of subsets of X

A function $\phi \colon \mathcal{C} \to \mathbb{R}$ is a **submeasure** if

 $-\phi(\emptyset)=0$,

- ϕ is *monotone*, that is, $\phi(A) \leq \phi(B)$ for all $A, B \in C$ with $A \subseteq B$, and
- ϕ is subadditive, that is, $\phi(A \cup B) \le \phi(A) + \phi(B)$ for all $A, B \in C$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Submeasures and their classification

- Submeasures

 $\mathcal{C} =$ an algebra of subsets of X

A function $\phi \colon \mathcal{C} \to \mathbb{R}$ is a **submeasure** if

 $-\phi(\emptyset)=0$,

- ϕ is *monotone*, that is, $\phi(A) \leq \phi(B)$ for all $A, B \in C$ with $A \subseteq B$, and
- ϕ is subadditive, that is, $\phi(A \cup B) \le \phi(A) + \phi(B)$ for all $A, B \in C$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

All submeasures ϕ are assumed to be diffused

Submeasures and their classification

- Submeasures

C = an algebra of subsets of X

A function $\phi \colon \mathcal{C} \to \mathbb{R}$ is a **submeasure** if

 $-\phi(\emptyset)=0$,

- ϕ is *monotone*, that is, $\phi(A) \leq \phi(B)$ for all $A, B \in C$ with $A \subseteq B$, and
- ϕ is subadditive, that is, $\phi(A \cup B) \le \phi(A) + \phi(B)$ for all $A, B \in C$.

All submeasures ϕ are assumed to be diffused, that is, for every $\epsilon > 0$, there exists a finite subset $\mathcal{B} \subseteq \mathcal{C}$ such that

$$X = igcup \mathcal{B}$$
 and $\phi(B) \leq \epsilon$ for $B \in \mathcal{B}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Submeasures and their classification

- Submeasures

 ϕ a submeasure on ${\mathcal C}$

 ϕ is a measure if $\phi(A \cup B) = \phi(A) + \phi(B)$ for disjoint $A, B \in C$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 ϕ is **pathological** if there does not exist a non-zero measure $\mu \colon \mathcal{C} \to \mathbb{R}$ with $\mu \leq \phi$.

Submeasures and their classification

-Submeasures

 ϕ a submeasure on ${\mathcal C}$

 ϕ is a **measure** if $\phi(A \cup B) = \phi(A) + \phi(B)$ for disjoint $A, B \in C$.

 ϕ is **pathological** if there does not exist a non-zero measure $\mu \colon \mathcal{C} \to \mathbb{R}$ with $\mu \leq \phi$.

Herer–Christensen (1975), Popov (1976), Erdős–Hajnal (1967), Davies–Rogers (1969): There exists a pathological submeasure.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Talagrand: There exists an exhaustive pathological submeasure.

Submeasures and their classification

Submeasures

A submeasure ϕ on C induces a (pseudo-)metric on C

$$\operatorname{dist}_{\phi}(A,B) = \phi(A \triangle B), \text{ for } A, B \in \mathcal{C}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

-Submeasures and their classification

Classification of submeasures

Classification of submeasures

Submeasures and their classification

Classification of submeasures

Let $C_1, \ldots, C_m \subseteq X$. Define

$$t(C_1,\ldots,C_m)$$

to be the maximum of $k \in \mathbb{N}$ such that for each $x \in X$

 $|\{i \mid x \in C_i\}| \geq k.$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - ● ○ ● ●

Submeasures and their classification

Classification of submeasures

Let
$$C_1, \ldots, C_m \subseteq X$$
. Define

$$t(C_1,\ldots,C_m)$$

to be the maximum of $k \in \mathbb{N}$ such that for each $x \in X$

$$|\{i \mid x \in C_i\}| \geq k.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

 $\frac{t(C_1,...,C_m)}{m}$ is the **covering number** of Kelley of the sequence $(C_1,...,C_m)$.

-Submeasures and their classification

Classification of submeasures

 $\phi \colon \mathcal{C} \to \mathbb{R}$ a submeasure For $\xi > 0$, let $\mathcal{C}_{\phi,\xi} = \{A \in \mathcal{C} \mid \phi(A) \leq \xi\}.$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Submeasures and their classification

Classification of submeasures

$$\begin{split} \phi \colon \mathcal{C} \to \mathbb{R} \text{ a submeasure} \\ \text{For } \xi > 0, \text{ let} \\ \mathcal{C}_{\phi,\xi} &= \{A \in \mathcal{C} \mid \phi(A) \leq \xi\}. \end{split}$$

$$\begin{aligned} \text{Define } h_{\phi} \colon \mathbb{R}_{>0} \to \mathbb{R}_{>0} \text{ by} \\ h_{\phi}(\xi) &= \frac{1}{\xi} \sup \Big\{ \frac{t(C_1, \dots, C_m)}{m} \ \Big| \ m \in \mathbb{N}, \ m > 0, \ C_1, \dots, C_m \in \mathcal{C}_{\phi,\xi} \Big\}. \end{aligned}$$

Submeasures and their classification

Classification of submeasures

The asymptotic behavior of h_{ϕ} at 0 is restricted.

Submeasures and their classification

Classification of submeasures

The asymptotic behavior of h_{ϕ} at 0 is restricted.

Theorem (Sch.–S.)

The limit $\lim_{\xi\to 0} h_{\phi}(\xi)$ exists (possibly infinite).

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Submeasures and their classification

Classification of submeasures

A submeasure ϕ is called

- elliptic if $h_{\phi}(\xi) = O(\xi)$ as $\xi \to 0$,
- hyperbolic if $\frac{1}{h_{\phi}(\xi)} = O(\xi)$ as $\xi \to 0$,
- **parabolic** if ϕ is neither elliptic, nor hyperbolic.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Submeasures and their classification

- Classification of submeasures

A submeasure ϕ is called

- elliptic if $h_{\phi}(\xi) = O(\xi)$ as $\xi \to 0$,
- hyperbolic if $\frac{1}{h_{\phi}(\xi)} = O(\xi)$ as $\xi \to 0$,
- **parabolic** if ϕ is neither elliptic, nor hyperbolic.

We prove that

a submeasure is hyperbolic if and only if it is pathological.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Submeasures and their classification

- Classification of submeasures

A submeasure ϕ is called

- elliptic if $h_{\phi}(\xi) = O(\xi)$ as $\xi \to 0$,
- hyperbolic if $\frac{1}{h_{\phi}(\xi)} = O(\xi)$ as $\xi \to 0$,
- **parabolic** if ϕ is neither elliptic, nor hyperbolic.

We prove that

a submeasure is hyperbolic if and only if it is pathological.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

There is a **rigidity** at the hyperbolic end.

Groups of the form $L_0(\phi, G)$ and their dynamics

Groups of the form $L_0(\phi, G)$ and their dynamics

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Groups of the form $L_0(\phi, G)$ and their dynamics

Groups $L_0(\phi, G)$

Groups of the form $L_0(\phi, G)$

Groups of the form $L_0(\phi, G)$ and their dynamics

Groups $L_0(\phi, G)$

 ϕ a submeasure on ${\mathcal C}$ and ${\mathcal G}$ a topological group Let

 $L_0(\phi, G)$

be the collection of all $f: X \to G$, for which there exists a finite partition \mathcal{P} of X into elements of \mathcal{C} with

f is constant on B for $B \in \mathcal{P}$.

Groups of the form $L_0(\phi, G)$ and their dynamics

 \square Groups $L_0(\phi, G)$

Equip $L_0(\phi, G)$ with the pointwise multiplication.

Groups of the form $L_0(\phi, G)$ and their dynamics

 \Box Groups $L_0(\phi, G)$

Equip $L_0(\phi, G)$ with the pointwise multiplication. Equip $L_0(\phi, G)$ with a topology as follows.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Groups of the form $L_0(\phi, G)$ and their dynamics

Groups $L_0(\phi, G)$

Equip $L_0(\phi, G)$ with the pointwise multiplication. Equip $L_0(\phi, G)$ with a topology as follows. $1_G \in U \subseteq G$ open and r > 0 determine a neighborhood of $f \in L_0(\phi, G)$ as the set of all $g \in L_0(\phi, G)$ with $\phi(\{x \mid f(x)g(x)^{-1} \notin U\}) < r.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

is is the topology of convergence in ϕ

This is the **topology of convergence in** ϕ .

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

Dynamics of groups of the form $L_0(\phi, G)$

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

Some known results

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

Some known results

Herer–Christensen: If ϕ is a **pathological** submeasure, then $L_0(\phi, \mathbb{R})$ is extremely amenable.

Used methods of functional analysis. The proof does not generalize much beyond $G = \mathbb{R}$.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

Some known results

Herer–Christensen: If ϕ is a **pathological** submeasure, then $L_0(\phi, \mathbb{R})$ is extremely amenable.

Used methods of functional analysis. The proof does not generalize much beyond $G = \mathbb{R}$.

Glasner, Pestov: If ϕ is a **measure** and *G* is an **amenable** locally compact Polish group, then $L_0(\phi, G)$ is extremely amenable.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Used concentration of measure.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

More results on groups of the form $L_0(\phi, G)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

More results on groups of the form $L_0(\phi, G)$

Farah–S.: If ϕ is a submeasure and G is **compact solvable** Polish group, then $L_0(\phi, G)$ is extremely amenable.

Using Ramsey theoretic methods coming from algebraic topology, related to Lovász's calculation of the chromatic number of the Kneser graph.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

More results on groups of the form $L_0(\phi, G)$

Farah–S.: If ϕ is a submeasure and G is **compact solvable** Polish group, then $L_0(\phi, G)$ is extremely amenable.

Using Ramsey theoretic methods coming from algebraic topology, related to Lovász's calculation of the chromatic number of the Kneser graph.

Sabok: If ϕ is a submeasure and *G* is **locally compact abelian** Polish group, then $L_0(\phi, G)$ is extremely amenable.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extending methods of Farah-S.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

The following theorem is our main result on dynamics of groups of the form $L_0(\phi, G)$.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

The following theorem is our main result on dynamics of groups of the form $L_0(\phi, G)$.

Theorem (Sch.–S.)

If ϕ is parabolic or hyperbolic and G is amenable, then $L_0(\phi, G)$ is extremely amenable.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

The following theorem is our main result on dynamics of groups of the form $L_0(\phi, G)$.

Theorem (Sch.–S.)

If ϕ is parabolic or hyperbolic and G is amenable, then $L_0(\phi, G)$ is extremely amenable.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

The theorem above generalizes results of Herer–Christensen, Glasner, Pestov, and, to a large degree, Farah–S. and Sabok.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

The following proposition complements, to an extent, the previous theorem.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

The following proposition complements, to an extent, the previous theorem.

Proposition (Sch.–S.)

If ϕ is elliptic or parabolic and G is not amenable, then $L_0(\phi, G)$ is not extremely amenable.

Groups of the form $L_0(\phi, G)$ and their dynamics

Dynamics of groups of the form $L_0(\phi, G)$

The following proposition complements, to an extent, the previous theorem.

Proposition (Sch.–S.)

If ϕ is elliptic or parabolic and G is not amenable, then $L_0(\phi, G)$ is not extremely amenable. In fact, $L_0(\phi, G)$ is not even amenable.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

-Nets of *mm*-spaces and covering concentration of submeasures

Nets of *mm*-spaces and covering concentration of submeasures

・ロト ・ 母 ト ・ 王 ト ・ 王 ・ つへぐ

Level Nets of *mm*-spaces and covering concentration of submeasures

mm-spaces and their nets

mm-spaces and their nets

Nets of *mm*-spaces and covering concentration of submeasures

mm-spaces and their nets

 $\mathcal{X} = (X, d, \mu)$ is a **metric measure space**, *mm*-space for short, if

- X is a standard Borel space,
- d is a Borel pseudo-metric on X, and
- μ is a Borel probability measure on X.

Nets of *mm*-spaces and covering concentration of submeasures

- mm-spaces and their nets

 $\mathcal{X} = (X, d, \mu)$ is a **metric measure space**, *mm*-space for short, if

- X is a standard Borel space,
- d is a Borel pseudo-metric on X, and
- μ is a Borel probability measure on X.

For a Borel set $A \subseteq X$ and r > 0, we write

$$B_r(A) = \{x \in X \mid d(A, x) < r\}.$$

Level Nets of *mm*-spaces and covering concentration of submeasures

mm-spaces and their nets

Let $(\mathcal{X}_i)_{i \in I}$ be a net of *mm*-spaces along a directed order *I*.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Nets of *mm*-spaces and covering concentration of submeasures

- mm-spaces and their nets

Let $(\mathcal{X}_i)_{i \in I}$ be a net of *mm*-spaces along a directed order *I*. $(\mathcal{X}_i)_{i \in I}$ has **concentration of measure** if, given Borel sets $A_i \subseteq X_i$ and r > 0,

$$\inf_{i\in I}\mu_i(A_i)>0$$

implies

$$\lim_{i\in I}\mu_i(B_r(A_i))=1.$$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

-Nets of *mm*-spaces and covering concentration of submeasures

└─ Nets of *mm*-spaces associated with a submeasure

Nets of *mm*-spaces associated with a submeasure

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Level Nets of *mm*-spaces and covering concentration of submeasures

└─Nets of *mm*-spaces associated with a submeasure

ϕ a submeasure on ${\mathcal C}$

-Nets of *mm*-spaces and covering concentration of submeasures

└─Nets of *mm*-spaces associated with a submeasure

ϕ a submeasure on ${\cal C}$

For a partition \mathcal{P} into elements of \mathcal{C} and a set Ω , define a pseudo-metric $\delta_{\mathcal{P},\phi}$ on $\Omega^{\mathcal{P}}$ by

$$\delta_{\mathcal{P},\phi}(\mathbf{x},\mathbf{y}) = \phi\left(\bigcup\{P \in \mathcal{P} \mid \mathbf{x}_P \neq \mathbf{y}_P\}\right).$$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Nets of *mm*-spaces and covering concentration of submeasures

Nets of *mm*-spaces associated with a submeasure

ϕ a submeasure on ${\cal C}$

For a partition \mathcal{P} into elements of \mathcal{C} and a set Ω , define a pseudo-metric $\delta_{\mathcal{P},\phi}$ on $\Omega^{\mathcal{P}}$ by

$$\delta_{\mathcal{P},\phi}(x,y) = \phi\left(\bigcup \{P \in \mathcal{P} \mid x_P \neq y_P\}\right).$$

Given a standard Borel probability space (Ω, μ) , let

$$\mathcal{X}(\mathcal{P}) = \left(\Omega^{\mathcal{P}}, \delta_{\mathcal{P},\phi}, \mu^{\otimes \mathcal{P}}\right).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

 $\mathcal{X}(\mathcal{P})$ is an *mm*-space.

-Nets of *mm*-spaces and covering concentration of submeasures

Nets of *mm*-spaces associated with a submeasure

Given two partitions ${\mathcal P}$ and ${\mathcal Q}$ into elements of ${\mathcal C},$ we write

$\mathcal{P} \preceq \mathcal{Q} \iff \forall \mathcal{Q} \in \mathcal{Q} \exists P \in \mathcal{P} \ \mathcal{Q} \subseteq P.$

-Nets of *mm*-spaces and covering concentration of submeasures

Nets of *mm*-spaces associated with a submeasure

Given two partitions ${\mathcal P}$ and ${\mathcal Q}$ into elements of ${\mathcal C},$ we write

$$\mathcal{P} \preceq \mathcal{Q} \Longleftrightarrow \forall \mathcal{Q} \in \mathcal{Q} \exists P \in \mathcal{P} \ \mathcal{Q} \subseteq P.$$

 \preceq is a directed order. So

 $(\mathcal{X}(\mathcal{P}))_{\mathcal{P}}$

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

is a **net of** *mm*-**spaces**.

-Nets of *mm*-spaces and covering concentration of submeasures

Covering concentration of submeasures

Covering concentration of submeasures

Nets of *mm*-spaces and covering concentration of submeasures

Covering concentration of submeasures

We say that a submeasure ϕ has covering concentration if the associated with it net $(\mathcal{X}(\mathcal{P}))_{\mathcal{P}}$ of *mm*-spaces has concentration of measure.

Nets of *mm*-spaces and covering concentration of submeasures

Covering concentration of submeasures

We say that a submeasure ϕ has covering concentration if the associated with it net $(\mathcal{X}(\mathcal{P}))_{\mathcal{P}}$ of *mm*-spaces has concentration of measure.

The connection with extreme amenability is given by the following proposition.

Proposition (Sch.–S.)

If ϕ has covering concentration and G is amenable, then $L_0(\phi, G)$ is extremely amenable.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Nets of *mm*-spaces and covering concentration of submeasures

Covering concentration of submeasures

The following theorem is our main result on covering concentration. It implies extreme amenability of $L_0(\phi, G)$ for ϕ hyperbolic or parabolic and G amenable.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Nets of *mm*-spaces and covering concentration of submeasures

Covering concentration of submeasures

The following theorem is our main result on covering concentration. It implies extreme amenability of $L_0(\phi, G)$ for ϕ hyperbolic or parabolic and G amenable.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Sch.-S.)

Every **hyperbolic** *or* **parabolic** *submeasure has covering concentration.*

Nets of *mm*-spaces and covering concentration of submeasures

Covering concentration of submeasures

The previous theorem does not extend to elliptic submeasures.

Theorem (Sch.-S.)

There is a submeasure (necessarily elliptic) that does not have covering concentration.

Concentration of measure in products

Concentration of measure in products

▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 - のへで

Concentration of measure in products

N a finite non-empty set and m > 0 $C = (C_i)_{1 \le i \le m}$ a cover of *N*, and $w = (w_i)_{1 \le i \le m}$ where $w_i > 0$ $(\Omega_j)_{j \in N}$ a family of non-empty sets

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

Concentration of measure in products

N a finite non-empty set and m > 0 $C = (C_i)_{1 \le i \le m}$ a cover of N, and $w = (w_i)_{1 \le i \le m}$ where $w_i > 0$ $(\Omega_j)_{j \in N}$ a family of non-empty sets

Define the metric $d_{\mathcal{C},w}$ on $\prod_{j\in N} \Omega_j$ by

$$d_{\mathcal{C},w}(x,y) = \inf \left\{ \sum_{i \in I} w_i \mid \{j \in N \mid x_j \neq y_j\} \subseteq \bigcup_{i \in I} C_i \right\}.$$

Concentration of measure in products

The metric $d_{\mathcal{C},w}$ generalizes the Hamming metric on product spaces in a direction that seems "orthogonal" to an important generalization due to Talagrand.

Concentration of measure in products

Theorem (Sch.–S.)

N, m, C, and w as above, but assume $t(C) \ge k$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Concentration of measure in products

Theorem (Sch.–S.)

N, m, C, and w as above, but assume $t(C) \ge k$ $(\Omega_j, \mu_j)_{j \in N}$ a family of standard Borel probability spaces $f: \prod_{j \in N} \Omega_j \to \mathbb{R}$ a measurable function that is 1-Lipschitz with respect to $d_{C,w}$

Concentration of measure in products

Theorem (Sch.–S.)

N, m, C, and w as above, but assume $t(C) \ge k$ $(\Omega_j, \mu_j)_{j \in N}$ a family of standard Borel probability spaces $f: \prod_{j \in N} \Omega_j \to \mathbb{R}$ a measurable function that is 1-Lipschitz with respect to $d_{C,w}$

Then, for every r > 0,

$$\left(\bigotimes_{j\in N}\mu_j\right)\left(\left\{x\mid f(x)-\mathbb{E}(f)\geq r
ight\}
ight)\,\leq\,\exp\!\left(-rac{kr^2}{4(w_1^2+\cdots+w_m^2)}
ight).$$

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日</p>

Concentration of measure in products

The proof uses entropy building on work of Ledoux and involving the Herbst argument.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで