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A topological group G is Polish if its group topology completely
metrizable and separable.

Examples:

— the unitary group of the separable infinite dimensional Hilbert
space;

— the group of all (classes of) measure preserving
transformations of a Borel probability measure space;

— the isometry group of a Polish metric space;

— the homeomorphism group of a compact second countable
space;

— the automorphism group of a countable (model theoretic)
structure.
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G a topological group

A G -flow is a continuous action of G on a compact space.

A G -flow is minimal if each orbit is dense.

Ellis: There exists a unique universal minimal flow M(G ), that
is, M(G ) is unique such that each minimal G -flow is a continuous
G -equivariant image of M(G ).
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Polish groups and their dynamics

A topological group G is extremely amenable if each G -flow has
a G -fixed point.

In other words, G is extremely amenable iff M(G ) is a one-point
flow.

Veech: No non-compact locally compact group is extremely
amenable.

G is amenable if each G -flow has a G -invariant, regular, Borel
probability measure.
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Herer–Christensen: If φ is a pathological submeasure, then
L0(φ,R) is extremely amenable.

Used methods of functional analysis.
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Polish groups and their dynamics

Two general methods for proving extreme amenability

(A) Ramsey theory

Pestov: The automorphism group of (Q, <) is extremely
amenable.

Kechris–Pestov–Todorcevic: There is an exact connection
between extreme amenability of closed subgroups of S∞ and
Ramsey theory.

(B) Concentration of measure

Gromov–Milman: The unitary group of a separable, infinite
dimensional Hilbert space is extremely amenable.

Glasner, Pestov: If φ is a measure and G is an amenable locally
compact Polish group, then L0(φ,G ) is extremely amenable.
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Submeasures and their classification

Submeasures

C = an algebra of subsets of X

A function φ : C → R is a submeasure if

— φ(∅) = 0,

— φ is monotone, that is, φ(A) ≤ φ(B) for all A,B ∈ C with
A ⊆ B, and

— φ is subadditive, that is, φ(A ∪ B) ≤ φ(A) + φ(B) for all
A,B ∈ C.

All submeasures φ are assumed to be diffused, that is, for
every ε > 0, there exists a finite subset B ⊆ C such that

X =
⋃
B and φ(B) ≤ ε for B ∈ B.
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φ a submeasure on C

φ is a measure if φ(A ∪ B) = φ(A) + φ(B) for disjoint A,B ∈ C.

φ is pathological if there does not exist a non-zero measure
µ : C → R with µ ≤ φ.

Herer–Christensen (1975), Popov (1976), Erdős–Hajnal (1967),
Davies–Rogers (1969): There exists a pathological submeasure.

Talagrand: There exists an exhaustive pathological submeasure.
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A submeasure φ on C induces a (pseudo-)metric on C

distφ(A,B) = φ(A4B), for A,B ∈ C.
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Let C1, . . . ,Cm ⊆ X . Define

t(C1, . . . ,Cm)

to be the maximum of k ∈ N such that for each x ∈ X

|{i | x ∈ Ci}| ≥ k.

t(C1,...,Cm)
m is the covering number of Kelley of the sequence

(C1, . . . ,Cm).
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φ : C → R a submeasure

For ξ > 0, let
Cφ,ξ = {A ∈ C | φ(A) ≤ ξ}.

Define hφ : R>0 → R>0 by
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ξ
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{
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Classification of submeasures

The asymptotic behavior of hφ at 0 is restricted.

Theorem (Sch.–S.)

The limit limξ→0 hφ(ξ) exists (possibly infinite).
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A submeasure φ is called

— elliptic if hφ(ξ) = O(ξ) as ξ → 0,

— hyperbolic if 1
hφ(ξ) = O(ξ) as ξ → 0,

— parabolic if φ is neither elliptic, nor hyperbolic.

We prove that
a submeasure is hyperbolic if and only if it is pathological.

There is a rigidity at the hyperbolic end.
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Groups L0(φ, G)

φ a submeasure on C and G a topological group

Let
L0(φ,G )

be the collection of all f : X → G , for which there exists a finite
partition P of X into elements of C with

f is constant on B for B ∈ P.



Polish groups, submeasures, and concentration of measure

Groups of the form L0(φ, G) and their dynamics

Groups L0(φ, G)

Equip L0(φ,G ) with the pointwise multiplication.

Equip L0(φ,G ) with a topology as follows.

1G ∈ U ⊆ G open and r > 0 determine a neighborhood of
f ∈ L0(φ,G ) as the set of all g ∈ L0(φ,G ) with

φ({x | f (x)g(x)−1 6∈ U}) < r .

This is the topology of convergence in φ.
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Dynamics of groups of the form L0(φ, G)

Some known results

Herer–Christensen: If φ is a pathological submeasure, then
L0(φ,R) is extremely amenable.

Used methods of functional analysis. The proof does not generalize
much beyond G = R.

Glasner, Pestov: If φ is a measure and G is an amenable locally
compact Polish group, then L0(φ,G ) is extremely amenable.

Used concentration of measure.
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Dynamics of groups of the form L0(φ, G)

More results on groups of the form L0(φ,G )

Farah–S.: If φ is a submeasure and G is compact solvable Polish
group, then L0(φ,G ) is extremely amenable.

Using Ramsey theoretic methods coming from algebraic topology,
related to Lovász’s calculation of the chromatic number of the
Kneser graph.

Sabok: If φ is a submeasure and G is locally compact abelian
Polish group, then L0(φ,G ) is extremely amenable.

Extending methods of Farah–S.
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Dynamics of groups of the form L0(φ, G)

The following theorem is our main result on dynamics of groups
of the form L0(φ,G ).

Theorem (Sch.–S.)

If φ is parabolic or hyperbolic and G is amenable, then L0(φ,G )
is extremely amenable.

The theorem above generalizes results of Herer–Christensen,
Glasner, Pestov, and, to a large degree, Farah–S. and Sabok.
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Dynamics of groups of the form L0(φ, G)

The following proposition complements, to an extent, the previous
theorem.

Proposition (Sch.–S.)

If φ is elliptic or parabolic and G is not amenable, then L0(φ,G )
is not extremely amenable.
In fact, L0(φ,G ) is not even amenable.
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mm-spaces and their nets

X = (X , d , µ) is a metric measure space, mm-space for short, if

— X is a standard Borel space,

— d is a Borel pseudo-metric on X , and

— µ is a Borel probability measure on X .

For a Borel set A ⊆ X and r > 0, we write

Br (A) = {x ∈ X | d(A, x) < r}.
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mm-spaces and their nets

Let (Xi )i∈I be a net of mm-spaces along a directed order I .

(Xi )i∈I has concentration of measure if, given Borel sets
Ai ⊆ Xi and r > 0,

inf
i∈I
µi (Ai ) > 0

implies
lim
i∈I

µi (Br (Ai )) = 1.
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Nets of mm-spaces associated with a submeasure

φ a submeasure on C

For a partition P into elements of C and a set Ω, define a
pseudo-metric δP,φ on ΩP by

δP,φ(x , y) = φ
(⋃
{P ∈ P | xP 6= yP}

)
.

Given a standard Borel probability space (Ω, µ), let

X (P) =
(
ΩP , δP,φ, µ

⊗P) .
X (P) is an mm-space.
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Covering concentration of submeasures

We say that a submeasure φ has covering concentration if the
associated with it net (X (P))P of mm-spaces has concentration of
measure.

The connection with extreme amenability is given by the
following proposition.

Proposition (Sch.–S.)

If φ has covering concentration and G is amenable, then L0(φ,G )
is extremely amenable.
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Nets of mm-spaces and covering concentration of submeasures

Covering concentration of submeasures

The following theorem is our main result on covering concentration.

It implies extreme amenability of L0(φ,G ) for φ hyperbolic or
parabolic and G amenable.

Theorem (Sch.–S.)

Every hyperbolic or parabolic submeasure has covering
concentration.
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Covering concentration of submeasures

The previous theorem does not extend to elliptic submeasures.

Theorem (Sch.–S.)

There is a submeasure (necessarily elliptic) that does not have
covering concentration.
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Concentration of measure in products

N a finite non-empty set and m > 0

C = (Ci )1≤i≤m a cover of N, and w = (wi )1≤i≤m where wi > 0

(Ωj)j∈N a family of non-empty sets

Define the metric dC,w on
∏

j∈N Ωj by

dC,w (x , y) = inf
{∑

i∈I
wi | {j ∈ N | xj 6= yj} ⊆

⋃
i∈I

Ci

}
.
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Concentration of measure in products

The metric dC,w generalizes the Hamming metric on product
spaces in a direction that seems “orthogonal” to an important
generalization due to Talagrand.
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Concentration of measure in products

Theorem (Sch.–S.)

N, m, C, and w as above, but assume t(C) ≥ k

(Ωj , µj)j∈N a family of standard Borel probability spaces

f :
∏

j∈N Ωj → R a measurable function that is 1-Lipschitz with
respect to dC,w

Then, for every r > 0,(⊗
j∈N

µj
)

({x | f (x)− E(f ) ≥ r}) ≤ exp
(
− kr2

4(w2
1 +···+w2

m)

)
.
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Concentration of measure in products

The proof uses entropy building on work of Ledoux and involving
the Herbst argument.
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