Fragments of the theory of the enumeration degrees

Mariya I. Soskova University of Wisconsin–Madison

Southeastern Logic Symposium SEALS 2020, Feb 29-March 1 Joint work with S. Lempp and T. Slaman

Supported by the NSF Grant No. DMS-1762648

The theory of a degree structure Let \mathcal{D} be a degree structure.

Question

• Is the theory of the structure in the language of partial orders decidable?

The theory of a degree structure Let \mathcal{D} be a degree structure.

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

The theory of a degree structure Let \mathcal{D} be a degree structure.

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$\forall \exists \text{-}Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e(\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

Related problems

• To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D} ;

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D} ;
- At the next level of complexity is the *extension of embeddings problem*:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q?

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D} ;
- At the next level of complexity is the *extension of embeddings problem*:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q?

• To understand what $\forall \exists$ -sentences are true in \mathcal{D} we need to solve a slightly more complicated problem:

Problem

We are given a finite partial order P and finite partial orders $Q_0, \ldots, Q_n \supseteq P$. Does every embedding of P extend to an embedding of one of the Q_i ?

Theorem (Lerman 71)

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_T as an initial segment.

• Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.

Theorem (Lerman 71)

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- \bullet We can extend P to a lattice by adding extra points for joins when necessary.

Theorem (Lerman 71)

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- \bullet We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \smallsetminus P$ are compatible with joins in P:
 - 0 If $q \in Q \smallsetminus P$ is bounded by some element in P then q is one of the added joins.

Theorem (Lerman 71)

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- \bullet We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \smallsetminus P$ are compatible with joins in P:
 - If $q \in Q \setminus P$ is bounded by some element in P then q is one of the added joins.
 - **2** If $x \in Q \setminus P$ and $u, v \in P$ and $x \ge u, v$ then $x \ge u \lor v$.

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_T as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- \bullet We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \smallsetminus P$ are compatible with joins in P:
 - If $q \in Q \smallsetminus P$ is bounded by some element in P then q is one of the added joins.
 - $\textcircled{0} \ \text{If} \ x \in Q \smallsetminus P \ \text{and} \ u, v \in P \ \text{and} \ x \geqslant u, v \ \text{then} \ x \geqslant u \lor v.$

Theorem (Shore 78; Lerman 83)

That is the only obstacle.

A characterization

Let U be an upper semilattice.

A characterization

Let U be an upper semilattice.

Definition

We say that U exhibits end-extensions if for every pair of a finite lattice P and partial order $Q \supseteq P$ such that if $x \in Q \setminus P$ then x is never below any element of P and x respects least upper bounds, every embedding of P into U extends to an embedding of Q into U.

A characterization

Let U be an upper semilattice.

Definition

We say that U exhibits end-extensions if for every pair of a finite lattice P and partial order $Q \supseteq P$ such that if $x \in Q \setminus P$ then x is never below any element of P and x respects least upper bounds, every embedding of P into U extends to an embedding of Q into U.

Theorem (Lempp, Slaman, Soskova)

Let φ be a Π_2 -sentence in the language of partial orders. The sentence φ is true in \mathcal{D}_T if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions.

The theory of a degree structure Lets take a look at the table again:

The theory of a degree structure Lets take a look at the table again:

Question

- Both \mathcal{R} and $\mathcal{D}_e(\leq \mathbf{0}')$ are dense structures.
- In fact, any countable partial order embeds into any nonempty interval.
- But what is the case of \mathcal{D}_e ?

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-}Th(\mathcal{D})$	$\forall \exists \text{-}Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Open	Open
	Woodin 97		
$\mathcal{D}_e(\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

The enumeration degrees

Theorem (Gutteridge 71)

The enumeration degrees are downwards dense.

The enumeration degrees

Theorem (Gutteridge 71)

The enumeration degrees are downwards dense.

A degree **b** is a *minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and the interval (\mathbf{a}, \mathbf{b}) is empty.

Theorem (Slaman, Calhoun 96)

There are degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a} .

The enumeration degrees

Theorem (Gutteridge 71)

The enumeration degrees are downwards dense.

A degree **b** is a *minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and the interval (\mathbf{a}, \mathbf{b}) is empty.

Theorem (Slaman, Calhoun 96)

There are degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a} .

A degree **b** is a *strong minimal cover* of a degree **a** if $\mathbf{a} < \mathbf{b}$ and for every degree $\mathbf{x} < \mathbf{b}$ we have that $\mathbf{x} \leq \mathbf{a}$.

Theorem (Kent, Lewis-Pye, Sorbi 12)

There are degrees \mathbf{a} and \mathbf{b} such that \mathbf{b} is a strong minimal cover of \mathbf{a}

Consider the lattice $\mathcal{L} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{L} extends to Q_i for some *i*:

 $b \\ a$

Consider the lattice $\mathcal{L} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{L} extends to Q_i for some *i*:

• We can embed \mathcal{L} as degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a strong minimal cover of \mathbf{a} , blocking extensions to Q_i with new x in the interval [a, b].

Consider the lattice $\mathcal{L} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{L} extends to Q_i for some *i*:

• We can embed \mathcal{L} as degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a strong minimal cover of \mathbf{a} , blocking extensions to Q_i with new x in the interval [a, b].

② We can embed \mathcal{L} as degrees $\mathbf{0}_e < \mathbf{b}$, blocking extensions to Q_i with new x < a.

Consider the lattice $\mathcal{L} = \{a < b\}$. What properties should possible extensions $Q_0, Q_1 \dots Q_n$ have so that every embedding of \mathcal{L} extends to Q_i for some *i*:

• We can embed \mathcal{L} as degrees $\mathbf{a} < \mathbf{b}$ such that \mathbf{b} is a strong minimal cover of \mathbf{a} , blocking extensions to Q_i with new x in the interval [a, b].

② We can embed \mathcal{L} as degrees $\mathbf{0}_e < \mathbf{b}$, blocking extensions to Q_i with new x < a.

Theorem (Slaman, Sorbi 14)

Every countable partial order can be embedded below any nonzero enumeration degree.

So these are the only obstacles.

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)

A Π_2 sentence φ is true in \mathcal{D}_e if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)

A Π_2 sentence φ is true in \mathcal{D}_e if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

• This would imply a decision procedure for the two quantifier theory of \mathcal{D}_e

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)

A Π_2 sentence φ is true in \mathcal{D}_e if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

- This would imply a decision procedure for the two quantifier theory of \mathcal{D}_e
- This would imply that we can extend the existence of strong minimal covers significantly:

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

• A strong minimal cover induces a strong interval embedding of the 2-element lattice.

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_e .

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_e .
- In fact, it would imply much more—for instance, the following statement:

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_e if there are degrees $\mathbf{a} < \mathbf{b}$ and a bijection $f : \mathcal{L} \to [\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leq \mathbf{b}$ we have that $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x} < \mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_e .
- In fact, it would imply much more—for instance, the following statement:

or $\mathbf{x} \leq \mathbf{b}$.

A small victory

Theorem (Lempp, Slaman, Soskova)

Every finite distributive lattice has a strong interval embedding.

A small victory

Theorem (Lempp, Slaman, Soskova)

Every finite distributive lattice has a strong interval embedding.

Applying Nies' Transfer Lemma we get:

Corollary

The $\exists \forall \exists$ -theory of \mathcal{D}_e is undecidable.

Degree structure	Complexity of $Th(\mathcal{D})$	$\exists \forall \exists \text{-} Th(\mathcal{D})$	$\forall \exists \text{-}Th(\mathcal{D})$
\mathcal{D}_T	Simpson 77	Lerman-	Shore 78;
		Schmerl 83	Lerman 83
$\mathcal{D}_T(\leqslant 0)$	Shore 81	Lerman-	Lerman-
		Schmerl 83	Shore 88
\mathcal{R}	Slaman-	Lempp-	Open
	Harrington 80s	Nies-Slaman 98	
\mathcal{D}_e	Slaman-	Lempp-Slaman-	Open
	Woodin 97	Soskova 19	Open
$\mathcal{D}_e(\leqslant 0')$	Ganchev-	Kent 06	Open
	Soskova 12		

An additional application

Theorem (Lempp, Slaman, Soskova)

The extension of embeddings problem in \mathcal{D}_e is decidable.

An additional application

Theorem (Lempp, Slaman, Soskova)

The extension of embeddings problem in \mathcal{D}_e is decidable.

Proof sketch:

Given finite orders $P \subseteq Q$, if $q \in Q \setminus P$ is a point that violates the conditions of the usual algorithm (the one for \mathcal{D}_T) then we build a specific embedding that blocks q.

Note that the theories of \mathcal{D}_e and \mathcal{D}_T differ at a Σ_2 sentence φ :

 $(\exists \mathbf{a}) [\mathbf{a} \neq \mathbf{0} \land \forall \mathbf{x} [\mathbf{x} < \mathbf{a} \rightarrow \mathbf{x} = \mathbf{0}]]$

Note that the theories of \mathcal{D}_e and \mathcal{D}_T differ at a Σ_2 sentence φ :

$$(\exists \mathbf{a}) [\mathbf{a} \neq \mathbf{0} \land \forall \mathbf{x} [\mathbf{x} < \mathbf{a} \rightarrow \mathbf{x} = \mathbf{0}]]$$

Theorem

Let E denote the set of Π_2 -sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap Th(\mathcal{D}_e) = E \cap Th(\mathcal{D}_T).$

Note that the theories of \mathcal{D}_e and \mathcal{D}_T differ at a Σ_2 sentence φ :

$$(\exists \mathbf{a}) [\mathbf{a} \neq \mathbf{0} \land \forall \mathbf{x} [\mathbf{x} < \mathbf{a} \rightarrow \mathbf{x} = \mathbf{0}]]$$

Theorem

Let E denote the set of Π_2 -sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap Th(\mathcal{D}_e) = E \cap Th(\mathcal{D}_T).$

Proof sketch:

• One direction uses our characterization of the two quantifier theory of \mathcal{D}_T and the fact that \mathcal{D}_e is an upper semilattice that exhibits end extensions.

Note that the theories of \mathcal{D}_e and \mathcal{D}_T differ at a Σ_2 sentence φ :

$$(\exists \mathbf{a}) [\mathbf{a} \neq \mathbf{0} \land \forall \mathbf{x} [\mathbf{x} < \mathbf{a} \rightarrow \mathbf{x} = \mathbf{0}]]$$

Theorem

Let E denote the set of Π_2 -sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap Th(\mathcal{D}_e) = E \cap Th(\mathcal{D}_T).$

 $Proof\ sketch:$

- One direction uses our characterization of the two quantifier theory of \mathcal{D}_T and the fact that \mathcal{D}_e is an upper semilattice that exhibits end extensions.
- The reverse direction follows from the proof of the extension of embedding theorem.

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x} < \mathbf{a} \lor \mathbf{b}$ then $\mathbf{x} \leq \mathbf{a}$ or $\mathbf{x} < \mathbf{b}$.

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x} < \mathbf{a} \lor \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} < \mathbf{b}$.

This is an instance of a *super minimal pair*: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x} < \mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x} < \mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x} < \mathbf{a} \lor \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} < \mathbf{b}$.

This is an instance of a *super minimal pair*: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x} < \mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x} < \mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Theorem (Jacobsen-Grocott, Soskova)

If **a** and **b** are enumeration degrees such that every degree $\mathbf{x} \leq \mathbf{a} \lor \mathbf{b}$ is bounded by **a** or bounded by **b**, then $\{\mathbf{a}, \mathbf{b}\}$ is not a minimal pair.

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x} < \mathbf{a} \lor \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} < \mathbf{b}$.

This is an instance of a *super minimal pair*: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x} < \mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x} < \mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Theorem (Jacobsen-Grocott, Soskova)

If **a** and **b** are enumeration degrees such that every degree $\mathbf{x} \leq \mathbf{a} \lor \mathbf{b}$ is bounded by **a** or bounded by **b**, then $\{\mathbf{a}, \mathbf{b}\}$ is not a minimal pair.

However!

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x} < \mathbf{a} \lor \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} < \mathbf{b}$.

This is an instance of a *super minimal pair*: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x} < \mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x} < \mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Theorem (Jacobsen-Grocott, Soskova)

If **a** and **b** are enumeration degrees such that every degree $\mathbf{x} \leq \mathbf{a} \lor \mathbf{b}$ is bounded by **a** or bounded by **b**, then $\{\mathbf{a}, \mathbf{b}\}$ is not a minimal pair.

However!

Theorem (Jacobsen-Grocott)

There are degrees \mathbf{a} and \mathbf{b} that form a minimal pair and every degree $\mathbf{x} < \mathbf{a}$ joins \mathbf{b} above \mathbf{a} .

Questions

Question

Can we embed all finite lattices in \mathcal{D}_e as strong intervals?

Important test cases are N_5 and M_3 :

Questions

Question

Can we embed all finite lattices in \mathcal{D}_e as strong intervals?

Important test cases are N_5 and M_3 :

Question

Are there super minimal pairs in \mathcal{D}_e ?

Questions

Question

Can we embed all finite lattices in \mathcal{D}_e as strong intervals?

Important test cases are N_5 and M_3 :

Question

Are there super minimal pairs in \mathcal{D}_e ?

Question

What property characterizes the two quantifier theory of \mathcal{D}_e ?

Thank you!