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The theory of a degree structure
Let D be a degree structure.

Question
Is the theory of the structure in the language of partial orders decidable?

How complicated is the theory?
How many quantifiers does it take to break decidability?

Degree structure Complexity of ThpDq D@D-ThpDq @D-ThpDq
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Shore 88

R Slaman-
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Lempp-
Nies-Slaman 98 Open

De
Slaman-
Woodin 97 Open Open

Depď 01q
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Soskova 12 Kent 06 Open
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Related problems

To understand what existential sentences are true D we need to
understand what finite partial orders can be embedded into D;

At the next level of complexity is the extension of embeddings problem:

Problem
We are given a finite partial order P and a finite partial order Q Ě P . Does
every embedding of P extend to an embedding of Q?

To understand what @D-sentences are true in D we need to solve a slightly
more complicated problem:

Problem
We are given a finite partial order P and finite partial orders Q0, . . . Qn Ě P .
Does every embedding of P extend to an embedding of one of the Qi?
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The Turing degrees and initial segment embeddings

Theorem (Lerman 71)
Every finite lattice can be embedded into DT as an initial segment.

Suppose that P is a finite partial order and Q Ě P is a finite partial order
extending P .
We can extend P to a lattice by adding extra points for joins when
necessary.
The initial segment embedding of the lattice P can be extended to an
embedding of Q only if new elements in Qr P are compatible with joins
in P :

1 If q P Qr P is bounded by some element in P then q is one of the added
joins.

2 If x P Qr P and u, v P P and x ě u, v then x ě u _ v.

Theorem (Shore 78; Lerman 83)
That is the only obstacle.
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A characterization

Let U be an upper semilattice.

Definition
We say that U exhibits end-extensions if for every pair of a finite lattice P and
partial order Q Ě P such that if x P Qr P then x is never below any element
of P and x respects least upper bounds, every embedding of P into U extends
to an embedding of Q into U .

Theorem (Lempp, Slaman, Soskova)

Let ϕ be a Π2-sentence in the language of partial orders. The sentence ϕ is
true in DT if and only if ϕ is true in every upper semilattice U with least
element that exhibits end-extensions.
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The theory of a degree structure
Lets take a look at the table again:

Question
Both R and Depď 01q are dense structures.
In fact, any countable partial order embeds into any nonempty interval.
But what is the case of De?
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The enumeration degrees

Theorem (Gutteridge 71)
The enumeration degrees are downwards dense.

A degree b is a minimal cover of a degree a if a ă b and the interval pa,bq is
empty.

Theorem (Slaman, Calhoun 96)
There are degrees a ă b such that b is a minimal cover of a.

A degree b is a strong minimal cover of a degree a if a ă b and for every
degree x ă b we have that x ď a.

Theorem (Kent, Lewis-Pye, Sorbi 12)
There are degrees a and b such that b is a strong minimal cover of a
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The simplest lattice
Consider the lattice L “ ta ă bu. What properties should possible extensions
Q0, Q1 . . . Qn have so that every embedding of L extends to Qi for some i:

a

b

1 We can embed L as degrees a ă b such that b is a strong minimal cover
of a, blocking extensions to Qi with new x in the interval ra, bs.

2 We can embed L as degrees 0e ă b, blocking extensions to Qi with new
x ă a.

Theorem (Slaman, Sorbi 14)
Every countable partial order can be embedded below any nonzero
enumeration degree.

So these are the only obstacles.

6 / 13



The simplest lattice
Consider the lattice L “ ta ă bu. What properties should possible extensions
Q0, Q1 . . . Qn have so that every embedding of L extends to Qi for some i:

a

b

1 We can embed L as degrees a ă b such that b is a strong minimal cover
of a, blocking extensions to Qi with new x in the interval ra, bs.

2 We can embed L as degrees 0e ă b, blocking extensions to Qi with new
x ă a.

Theorem (Slaman, Sorbi 14)
Every countable partial order can be embedded below any nonzero
enumeration degree.

So these are the only obstacles.

6 / 13



The simplest lattice
Consider the lattice L “ ta ă bu. What properties should possible extensions
Q0, Q1 . . . Qn have so that every embedding of L extends to Qi for some i:

a

b

1 We can embed L as degrees a ă b such that b is a strong minimal cover
of a, blocking extensions to Qi with new x in the interval ra, bs.

2 We can embed L as degrees 0e ă b, blocking extensions to Qi with new
x ă a.

Theorem (Slaman, Sorbi 14)
Every countable partial order can be embedded below any nonzero
enumeration degree.

So these are the only obstacles.

6 / 13



The simplest lattice
Consider the lattice L “ ta ă bu. What properties should possible extensions
Q0, Q1 . . . Qn have so that every embedding of L extends to Qi for some i:

a

b

1 We can embed L as degrees a ă b such that b is a strong minimal cover
of a, blocking extensions to Qi with new x in the interval ra, bs.

2 We can embed L as degrees 0e ă b, blocking extensions to Qi with new
x ă a.

Theorem (Slaman, Sorbi 14)
Every countable partial order can be embedded below any nonzero
enumeration degree.

So these are the only obstacles.

6 / 13



A wild conjecture

Let U be an upper semilattice.

Definition
U exhibits strong downward density if every countable partial order can be
embedded below any nonzero element of U .

Conjecture (Lempp, Slaman, Soskova)
A Π2 sentence ϕ is true in De if and only if ϕ is true in every upper
semilattice U with least element that exhibits end-extensions and strong
downward density.

This would imply a decision procedure for the two quantifier theory of De

This would imply that we can extend the existence of strong minimal
covers significantly:
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Strong interval embeddings
Definition
Let L be a lattice. We say that L strongly embeds as an interval in De if there
are degrees a ă b and a bijection f : LÑ ra,bs such that for every x ď b we
have that x P ra,bs or else x ă a.

A strong minimal cover induces a strong interval embedding of the
2-element lattice.
The conjecture implies that every finite lattice has a strong interval
embedding in De.
In fact, it would imply much more—for instance, the following statement:

There are degrees a and b
such that:

1 a and b are a minimal
pair.

2 if x ă a _ b then x ď a
or x ď b.

0

a b

a_ b
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A small victory
Theorem (Lempp, Slaman, Soskova)
Every finite distributive lattice has a strong interval embedding.

Applying Nies’ Transfer Lemma we get:

Corollary
The D@D-theory of De is undecidable.
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An additional application

Theorem (Lempp, Slaman, Soskova )
The extension of embeddings problem in De is decidable.

Proof sketch:
Given finite orders P Ď Q, if q P Qr P is a point that violates the conditions
of the usual algorithm (the one for DT ) then we build a specific embedding
that blocks q.
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The common fragment of the theories of DT and De

Note that the theories of De and DT differ at a Σ2 sentence ϕ:

pDaqra ‰ 0^ @xrx ă aÑ x “ 0ss

Theorem
Let E denote the set of Π2-sentences in the language of a partial orders that
formalize an instance of the extension of embeddings problem. Then
E X ThpDeq “ E X ThpDT q.

Proof sketch:

One direction uses our characterization of the two quantifier theory of DT

and the fact that De is an upper semilattice that exhibits end extensions.
The reverse direction follows from the proof of the extension of
embedding theorem.
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An unexpected defeat

Recall that our conjecture implies
that there are degrees a and b such
that: a and b are a minimal pair and
if x ă a_ b then x ď a or x ă b. 0

a b

a_ b

This is an instance of a super minimal pair: a minimal pair ta,bu such that
every degree x ă a joins b above a and every degree x ă b joins a above b

Theorem (Jacobsen-Grocott, Soskova)
If a and b are enumeration degrees such that every degree x ď a_ b is
bounded by a or bounded by b, then ta,bu is not a minimal pair.

However!

Theorem (Jacobsen-Grocott)
There are degrees a and b that form a minimal pair and every degree x ă a
joins b above a.
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Questions
Question
Can we embed all finite lattices in De as strong intervals?

Important test cases are N5 and M3:

a

b c

d

e

a

b c
d

e

Question
Are there super minimal pairs in De ?

Question
What property characterizes the two quantifier theory of De?
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Thank you!


