Fragments of the theory of the enumeration degrees

Mariya I. Soskova
University of Wisconsin-Madison

Southeastern Logic Symposium
SEALS 2020, Feb 29-March 1
Joint work with S. Lempp and T. Slaman

The theory of a degree structure

Let \mathcal{D} be a degree structure.
Question

- Is the theory of the structure in the language of partial orders decidable?

The theory of a degree structure

Let \mathcal{D} be a degree structure.
Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

The theory of a degree structure

Let \mathcal{D} be a degree structure.

Question

- Is the theory of the structure in the language of partial orders decidable?
- How complicated is the theory?
- How many quantifiers does it take to break decidability?

Degree structure	Complexity of $\operatorname{Th}(\mathcal{D})$	$\exists \forall \exists-T h(\mathcal{D})$	$\forall \exists-T h(\mathcal{D})$
\mathcal{D}_{T}	Simpson 77	Lerman- Schmerl 83	Shore 78; Lerman 83
$\mathcal{D}_{T}(\leqslant \mathbf{0})$	Shore 81	Lerman- Schmerl 83	Lerman- Shore 88
\mathcal{R}	Slaman- Harrington 80s	Lempp- Nies-Slaman 98	Open
\mathcal{D}_{e}	Slaman- Woodin 97	Open	Open
$\mathcal{D}_{e}\left(\leqslant \mathbf{0}^{\prime}\right)$	Ganchev- Soskova 12	Kent 06	Open

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D};

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D};
- At the next level of complexity is the extension of embeddings problem:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q ?

Related problems

- To understand what existential sentences are true \mathcal{D} we need to understand what finite partial orders can be embedded into \mathcal{D};
- At the next level of complexity is the extension of embeddings problem:

Problem

We are given a finite partial order P and a finite partial order $Q \supseteq P$. Does every embedding of P extend to an embedding of Q ?

- To understand what $\forall \exists$-sentences are true in \mathcal{D} we need to solve a slightly more complicated problem:

Problem

We are given a finite partial order P and finite partial orders $Q_{0}, \ldots Q_{n} \supseteq P$. Does every embedding of P extend to an embedding of one of the Q_{i} ?

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)
Every finite lattice can be embedded into \mathcal{D}_{T} as an initial segment.

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)
Every finite lattice can be embedded into \mathcal{D}_{T} as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_{T} as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- We can extend P to a lattice by adding extra points for joins when necessary.

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_{T} as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \backslash P$ are compatible with joins in P :
(1) If $q \in Q \backslash P$ is bounded by some element in P then q is one of the added joins.

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_{T} as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \backslash P$ are compatible with joins in P :
(1) If $q \in Q \backslash P$ is bounded by some element in P then q is one of the added joins.
(2) If $x \in Q \backslash P$ and $u, v \in P$ and $x \geqslant u, v$ then $x \geqslant u \vee v$.

The Turing degrees and initial segment embeddings

Theorem (Lerman 71)

Every finite lattice can be embedded into \mathcal{D}_{T} as an initial segment.

- Suppose that P is a finite partial order and $Q \supseteq P$ is a finite partial order extending P.
- We can extend P to a lattice by adding extra points for joins when necessary.
- The initial segment embedding of the lattice P can be extended to an embedding of Q only if new elements in $Q \backslash P$ are compatible with joins in P :
(1) If $q \in Q \backslash P$ is bounded by some element in P then q is one of the added joins.
(2) If $x \in Q \backslash P$ and $u, v \in P$ and $x \geqslant u, v$ then $x \geqslant u \vee v$.

Theorem (Shore 78; Lerman 83)
That is the only obstacle.

A characterization

Let U be an upper semilattice.

A characterization

Let U be an upper semilattice.

Definition

We say that U exhibits end-extensions if for every pair of a finite lattice P and partial order $Q \supseteq P$ such that if $x \in Q \backslash P$ then x is never below any element of P and x respects least upper bounds, every embedding of P into U extends to an embedding of Q into U.

A characterization

Let U be an upper semilattice.
Definition
We say that U exhibits end-extensions if for every pair of a finite lattice P and partial order $Q \supseteq P$ such that if $x \in Q \backslash P$ then x is never below any element of P and x respects least upper bounds, every embedding of P into U extends to an embedding of Q into U.

Theorem (Lempp, Slaman, Soskova)

Let φ be a Π_{2}-sentence in the language of partial orders. The sentence φ is true in \mathcal{D}_{T} if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions.

The theory of a degree structure

Lets take a look at the table again:

The theory of a degree structure

Lets take a look at the table again:

Question

- Both \mathcal{R} and $\mathcal{D}_{e}\left(\leqslant \mathbf{0}^{\prime}\right)$ are dense structures.
- In fact, any countable partial order embeds into any nonempty interval.
- But what is the case of \mathcal{D}_{e} ?

Degree structure	Complexity of $\operatorname{Th}(\mathcal{D})$	$\exists \forall \exists-T h(\mathcal{D})$	$\forall \exists-T h(\mathcal{D})$
\mathcal{D}_{T}	Simpson 77	Lerman- Schmerl 83	Shore 78; Lerman 83
$\mathcal{D}_{T}(\leqslant \mathbf{0})$	Shore 81	Lerman- Schmerl 83	Lerman- Shore 88
\mathcal{R}	Slaman- Harrington 80s	Lempp- Nies-Slaman 98	Open
\mathcal{D}_{e}	Slaman- Woodin 97	Open	Open
$\mathcal{D}_{e}\left(\leqslant \mathbf{0}^{\prime}\right)$	Ganchev- Soskova 12	Kent 06	Open

The enumeration degrees

Theorem (Gutteridge 71)
The enumeration degrees are downwards dense.

The enumeration degrees

Theorem (Gutteridge 71)
The enumeration degrees are downwards dense.

A degree \mathbf{b} is a minimal cover of a degree \mathbf{a} if $\mathbf{a}<\mathbf{b}$ and the interval (\mathbf{a}, \mathbf{b}) is empty.

Theorem (Slaman, Calhoun 96)
There are degrees $\mathbf{a}<\mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a}.

The enumeration degrees

Theorem (Gutteridge 71)
The enumeration degrees are downwards dense.

A degree \mathbf{b} is a minimal cover of a degree \mathbf{a} if $\mathbf{a}<\mathbf{b}$ and the interval (\mathbf{a}, \mathbf{b}) is empty.

Theorem (Slaman, Calhoun 96)

There are degrees $\mathbf{a}<\mathbf{b}$ such that \mathbf{b} is a minimal cover of \mathbf{a}.

A degree \mathbf{b} is a strong minimal cover of a degree \mathbf{a} if $\mathbf{a}<\mathbf{b}$ and for every degree $\mathbf{x}<\mathbf{b}$ we have that $\mathbf{x} \leqslant \mathbf{a}$.

Theorem (Kent, Lewis-Pye, Sorbi 12)
There are degrees \mathbf{a} and \mathbf{b} such that \mathbf{b} is a strong minimal cover of \mathbf{a}

The simplest lattice

Consider the lattice $\mathcal{L}=\{a<b\}$. What properties should possible extensions $Q_{0}, Q_{1} \ldots Q_{n}$ have so that every embedding of \mathcal{L} extends to Q_{i} for some i :

The simplest lattice

Consider the lattice $\mathcal{L}=\{a<b\}$. What properties should possible extensions $Q_{0}, Q_{1} \ldots Q_{n}$ have so that every embedding of \mathcal{L} extends to Q_{i} for some i :

(1) We can embed \mathcal{L} as degrees $\mathbf{a}<\mathbf{b}$ such that \mathbf{b} is a strong minimal cover of \mathbf{a}, blocking extensions to Q_{i} with new x in the interval $[a, b]$.

The simplest lattice

Consider the lattice $\mathcal{L}=\{a<b\}$. What properties should possible extensions $Q_{0}, Q_{1} \ldots Q_{n}$ have so that every embedding of \mathcal{L} extends to Q_{i} for some i :

(1) We can embed \mathcal{L} as degrees $\mathbf{a}<\mathbf{b}$ such that \mathbf{b} is a strong minimal cover of a, blocking extensions to Q_{i} with new x in the interval $[a, b]$.
(2) We can embed \mathcal{L} as degrees $\mathbf{0}_{e}<\mathbf{b}$, blocking extensions to Q_{i} with new $x<a$.

The simplest lattice

Consider the lattice $\mathcal{L}=\{a<b\}$. What properties should possible extensions $Q_{0}, Q_{1} \ldots Q_{n}$ have so that every embedding of \mathcal{L} extends to Q_{i} for some i :

(1) We can embed \mathcal{L} as degrees $\mathbf{a}<\mathbf{b}$ such that \mathbf{b} is a strong minimal cover of a, blocking extensions to Q_{i} with new x in the interval $[a, b]$.
(2) We can embed \mathcal{L} as degrees $\mathbf{0}_{e}<\mathbf{b}$, blocking extensions to Q_{i} with new $x<a$.

Theorem (Slaman, Sorbi 14)

Every countable partial order can be embedded below any nonzero enumeration degree.

So these are the only obstacles.

A wild conjecture

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

A wild conjecture

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)
A Π_{2} sentence φ is true in \mathcal{D}_{e} if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

A wild conjecture

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)
A Π_{2} sentence φ is true in \mathcal{D}_{e} if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

- This would imply a decision procedure for the two quantifier theory of \mathcal{D}_{e}

A wild conjecture

Let U be an upper semilattice.

Definition

U exhibits strong downward density if every countable partial order can be embedded below any nonzero element of U.

Conjecture (Lempp, Slaman, Soskova)
A Π_{2} sentence φ is true in \mathcal{D}_{e} if and only if φ is true in every upper semilattice U with least element that exhibits end-extensions and strong downward density.

- This would imply a decision procedure for the two quantifier theory of \mathcal{D}_{e}
- This would imply that we can extend the existence of strong minimal covers significantly:

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_{e} if there are degrees $\mathbf{a}<\mathbf{b}$ and a bijection $f: \mathcal{L} \rightarrow[\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leqslant \mathbf{b}$ we have that $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x}<\mathbf{a}$.

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_{e} if there are degrees $\mathbf{a}<\mathbf{b}$ and a bijection $f: \mathcal{L} \rightarrow[\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leqslant \mathbf{b}$ we have that $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x}<\mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_{e} if there are degrees $\mathbf{a}<\mathbf{b}$ and a bijection $f: \mathcal{L} \rightarrow[\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leqslant \mathbf{b}$ we have that $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x}<\mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_{e}.

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_{e} if there are degrees $\mathbf{a}<\mathbf{b}$ and a bijection $f: \mathcal{L} \rightarrow[\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leqslant \mathbf{b}$ we have that $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x}<\mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_{e}.
- In fact, it would imply much more - for instance, the following statement:

Strong interval embeddings

Definition

Let \mathcal{L} be a lattice. We say that \mathcal{L} strongly embeds as an interval in \mathcal{D}_{e} if there are degrees $\mathbf{a}<\mathbf{b}$ and a bijection $f: \mathcal{L} \rightarrow[\mathbf{a}, \mathbf{b}]$ such that for every $\mathbf{x} \leqslant \mathbf{b}$ we have that $\mathbf{x} \in[\mathbf{a}, \mathbf{b}]$ or else $\mathbf{x}<\mathbf{a}$.

- A strong minimal cover induces a strong interval embedding of the 2-element lattice.
- The conjecture implies that every finite lattice has a strong interval embedding in \mathcal{D}_{e}.
- In fact, it would imply much more - for instance, the following statement:

There are degrees \mathbf{a} and \mathbf{b} such that:
(1) a and \mathbf{b} are a minimal pair.
(2) if $\mathbf{x}<\mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x} \leqslant \mathbf{b}$.

A small victory

Theorem (Lempp, Slaman, Soskova)
Every finite distributive lattice has a strong interval embedding.

A small victory

Theorem (Lempp, Slaman, Soskova)
Every finite distributive lattice has a strong interval embedding.
Applying Nies' Transfer Lemma we get:
Corollary
The $\exists \forall \exists$-theory of \mathcal{D}_{e} is undecidable.

Degree structure	Complexity of Th(D)	$\exists \forall \exists-T h(\mathcal{D})$	$\forall \exists-T h(\mathcal{D})$
\mathcal{D}_{T}	Simpson 77	Lerman- Schmerl 83	Shore 78; Lerman 83
$\mathcal{D}_{T}(\leqslant \mathbf{0})$	Shore 81	Lerman- Schmerl 83	Lerman- Shore 88
\mathcal{R}	Slaman- Harrington 80s	Lempp- Nies-Slaman 98	Open
\mathcal{D}_{e}	Slaman- Woodin 97	Lempp-Slaman- Soskova 19	Open
$\mathcal{D}_{e}\left(\leqslant \mathbf{0}^{\prime}\right)$	Ganchev- Soskova 12	Kent 06	Open

An additional application

Theorem (Lempp, Slaman, Soskova)
The extension of embeddings problem in \mathcal{D}_{e} is decidable.

An additional application

Theorem (Lempp, Slaman, Soskova)
The extension of embeddings problem in \mathcal{D}_{e} is decidable.

Proof sketch:
Given finite orders $P \subseteq Q$, if $q \in Q \backslash P$ is a point that violates the conditions of the usual algorithm (the one for \mathcal{D}_{T}) then we build a specific embedding that blocks q.

The common fragment of the theories of \mathcal{D}_{T} and \mathcal{D}_{e}

Note that the theories of \mathcal{D}_{e} and \mathcal{D}_{T} differ at a Σ_{2} sentence φ :

$$
(\exists \mathrm{a})[\mathrm{a} \neq \mathbf{0} \wedge \forall \mathrm{x}[\mathrm{x}<\mathbf{a} \rightarrow \mathrm{x}=0]]
$$

The common fragment of the theories of \mathcal{D}_{T} and \mathcal{D}_{e}

Note that the theories of \mathcal{D}_{e} and \mathcal{D}_{T} differ at a Σ_{2} sentence φ :

$$
(\exists \mathrm{a})[\mathrm{a} \neq \mathbf{0} \wedge \forall \mathrm{x}[\mathrm{x}<\mathbf{a} \rightarrow \mathrm{x}=0]]
$$

Theorem

Let E denote the set of Π_{2}-sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap T h\left(\mathcal{D}_{e}\right)=E \cap T h\left(\mathcal{D}_{T}\right)$.

The common fragment of the theories of \mathcal{D}_{T} and \mathcal{D}_{e}

Note that the theories of \mathcal{D}_{e} and \mathcal{D}_{T} differ at a Σ_{2} sentence φ :

$$
(\exists \mathrm{a})[\mathrm{a} \neq \mathbf{0} \wedge \forall \mathrm{x}[\mathrm{x}<\mathbf{a} \rightarrow \mathrm{x}=0]]
$$

Theorem

Let E denote the set of Π_{2}-sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap T h\left(\mathcal{D}_{e}\right)=E \cap T h\left(\mathcal{D}_{T}\right)$.

Proof sketch:

- One direction uses our characterization of the two quantifier theory of \mathcal{D}_{T} and the fact that \mathcal{D}_{e} is an upper semilattice that exhibits end extensions.

The common fragment of the theories of \mathcal{D}_{T} and \mathcal{D}_{e}

Note that the theories of \mathcal{D}_{e} and \mathcal{D}_{T} differ at a Σ_{2} sentence φ :

$$
(\exists \mathrm{a})[\mathrm{a} \neq 0 \wedge \forall \mathrm{x}[\mathrm{x}<\mathbf{a} \rightarrow \mathrm{x}=0]]
$$

Theorem

Let E denote the set of Π_{2}-sentences in the language of a partial orders that formalize an instance of the extension of embeddings problem. Then $E \cap T h\left(\mathcal{D}_{e}\right)=E \cap T h\left(\mathcal{D}_{T}\right)$.

Proof sketch:

- One direction uses our characterization of the two quantifier theory of \mathcal{D}_{T} and the fact that \mathcal{D}_{e} is an upper semilattice that exhibits end extensions.
- The reverse direction follows from the proof of the extension of embedding theorem.

An unexpected defeat

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x}<\mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x}<\mathbf{b}$.

An unexpected defeat

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x}<\mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x}<\mathbf{b}$.

This is an instance of a super minimal pair: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x}<\mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x}<\mathbf{b}$ joins \mathbf{a} above \mathbf{b}

An unexpected defeat

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x}<\mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x}<\mathbf{b}$.

This is an instance of a super minimal pair: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x}<\mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x}<\mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Theorem (Jacobsen-Grocott, Soskova)

If \mathbf{a} and \mathbf{b} are enumeration degrees such that every degree $\mathbf{x} \leqslant \mathbf{a} \vee \mathbf{b}$ is bounded by \mathbf{a} or bounded by \mathbf{b}, then $\{\mathbf{a}, \mathbf{b}\}$ is not a minimal pair.

An unexpected defeat

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x}<\mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x}<\mathbf{b}$.

This is an instance of a super minimal pair: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x}<\mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x}<\mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Theorem (Jacobsen-Grocott, Soskova)
If \mathbf{a} and \mathbf{b} are enumeration degrees such that every degree $\mathbf{x} \leqslant \mathbf{a} \vee \mathbf{b}$ is bounded by \mathbf{a} or bounded by \mathbf{b}, then $\{\mathbf{a}, \mathbf{b}\}$ is not a minimal pair.

However!

An unexpected defeat

Recall that our conjecture implies that there are degrees \mathbf{a} and \mathbf{b} such that: \mathbf{a} and \mathbf{b} are a minimal pair and if $\mathbf{x}<\mathbf{a} \vee \mathbf{b}$ then $\mathbf{x} \leqslant \mathbf{a}$ or $\mathbf{x}<\mathbf{b}$.

This is an instance of a super minimal pair: a minimal pair $\{\mathbf{a}, \mathbf{b}\}$ such that every degree $\mathbf{x}<\mathbf{a}$ joins \mathbf{b} above \mathbf{a} and every degree $\mathbf{x}<\mathbf{b}$ joins \mathbf{a} above \mathbf{b}

Theorem (Jacobsen-Grocott, Soskova)

If \mathbf{a} and \mathbf{b} are enumeration degrees such that every degree $\mathbf{x} \leqslant \mathbf{a} \vee \mathbf{b}$ is bounded by \mathbf{a} or bounded by \mathbf{b}, then $\{\mathbf{a}, \mathbf{b}\}$ is not a minimal pair.

However!
Theorem (Jacobsen-Grocott)
There are degrees \mathbf{a} and \mathbf{b} that form a minimal pair and every degree $\mathbf{x}<\mathbf{a}$ joins \mathbf{b} above \mathbf{a}.

Questions

Question

Can we embed all finite lattices in \mathcal{D}_{e} as strong intervals?
Important test cases are N_{5} and M_{3} :

Questions

Question

Can we embed all finite lattices in \mathcal{D}_{e} as strong intervals?
Important test cases are N_{5} and M_{3} :

Question

Are there super minimal pairs in \mathcal{D}_{e} ?

Questions

Question

Can we embed all finite lattices in \mathcal{D}_{e} as strong intervals?
Important test cases are N_{5} and M_{3} :

Question
Are there super minimal pairs in \mathcal{D}_{e} ?

Question

What property characterizes the two quantifier theory of \mathcal{D}_{e} ?

Thank you!

