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Abstract

I analyse a natural class of proper forcings associated with actions of
countable groups on Polish spaces, providing a practical and informative
characterization as to when these forcings add no independent reals.

1 Introduction

Many σ-ideals on Polish spaces and their associated quotient posets of Borel sets
are naturally associated with an action of a countable group on the underlying
Polish space. In a narrow c.c.c. context it is possible to classify such situations,
as Kunen showed in [4]. However, there are many examples in which the ideal is
not c.c.c. A broad class of such examples has been introduced in [7, Section 2].
In this paper, I provide a practical and informative answer to the question which
of the resulting quotient partial orders add independent reals. This is typically
a difficult question to resolve for specific partial orders, requiring notationally
demanding and repetitive fusion arguments.

First, I must define the class of σ-ideals and quotient posets in question. All
of them are generated from hypergraphs. The common hypergraph nomencla-
ture is captured in the following definition.

Definition 1.1. A finitary hypergraph G on a set X is a set of finite subsets
of X. The elements of G are referred to as its hyperedges. A subset A ⊂ X is
a G-anticlique if its contains no subset belonging to G. A finitary hypergraph
G on X is Borel if G is a Borel subset of the hyperspace K(X) of X with the
Vietoris topology.

The posets are generated from the hypergraphs in the following flexible way.

Definition 1.2. Let X be a Polish space and G be a countable family of analytic
finitary hypergraphs onX. Then IG denotes the σ-ideal onX generated by Borel
sets A ⊂ X which are G-anticliques for some G ∈ G. In addition, PG denotes
the poset of Borel IG-positive subsets of X ordered by inclusion.
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The paper [7] provides a general method for analyzing the forcing properties of
the posets of the form PG and connecting them to simple combinatorial prop-
erties of the hypergraphs in the collection G. Here, we deal with a large class of
hypergraph posets associated with actions of countable groups as in the follow-
ing definition.

Definition 1.3. [7, Definition 2.1] A countable collection G of analytic finitary
hypergraphs on a Polish space X is actionable if there is a countable group Γ
acting on X in a Borel way so that each hyperedge of each hypergraph in G
consists of pairwise orbit equivalent elements and for each hypergraph G ∈ G
and every γ ∈ Γ, γ ·G ∈ G. A σ-ideal I on a Polish space X is actionable if it
is equal to IG for some actionable family G of analytic finitary hypergraphs. A
poset P is actionable if it is in the forcing sense equivalent to the poset of Borel
I-positive sets ordered by inclusion for some actionable σ-ideal I

It is proved in [7, Theorem 2.2, Corollary 3.18] that actionable posets are proper
and bounding. Not adding independent reals is an important forcing property
which escaped the theorems of [7]. Recall:

Definition 1.4. Let M be a transitive model of set theory and x ⊂ ω be an
infinite binary sequence. The set x is an independent real over M if neither it nor
its complement contain an infinite subset in M . A poset P adds no independent
reals if P forces that there are no reals in the extension which are independent
over the ground model.

Identifying subsets of ω with their chairacteristic functions, an independent real
can be viewed as a point in 2ω without an infinite subset in the model M . It
turns out that there a simple property of actionable families of hypergraphs
which is sufficient and in a suitable sense necessary to conclude that the associ-
ated poset adds no independent reals.

Definition 1.5. A family G of hypergraphs on a set X is subadditive if for every
finite subset H ⊂ G and a number n ∈ ω there is a hypergraph G ∈ G such that
no G-hyperedge can be covered by a union of n-many sets, each of which is an
H-anticlique for some hypergraph H ∈ H.

The main theorem of this paper is the following.

Theorem 1.6. Suppose that G is a subadditive, actionable countable collection
of finitary Borel hypergraphs on a Polish space X. Then the poset PG does not
add independent reals.

In fact, the criterion the theorem provides is optimal in a precise sense.

Theorem 1.7. Suppose that G is an actionable countable collection of finitary
Borel hypergraphs on a Polish space X such that the poset PG adds no inde-
pendent reals. Then there is a subadditive, actionable countable collection H of
finitary Borel hypergraphs on X such that IH = IG.
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The proof shows that there is a natural candidate for the family H. Thus, if
an actionable poset is at hand and the question is to be resolved whether it
adds independent reals or not, the user only needs to check the subadditivity
properties of the generating family of hypergraphs. This is typically a trivial
procedure which includes zero fusion arguments, rejoice evermore.

It is now high time to consider several examples.

Example 1.8. (Silver forcing) Let Γ be the countable Cantor group of eventu-
ally zero binary sequences, acting on X = 2ω by coordinatewise addition. Let G
be the Hamming graph on X, connecting two infinite binary sequences if they
differ in exactly one entry, and let G = {G}. Since the graph G is invariant
under the group action, it is clear that G is an actionable family. The quotient
poset PG is well-known to be equivalent to the Silver forcing [6, Section 4.7.4].

The family G is clearly not subadditive; in fact, the graph G is bipartite
and therefore every finite set can be written as a union of two G-anticliques.
Accordingly, the poset PG adds an independent real. It is well-known that if
x ∈ 2ω is a PG-generic point, then the infinite binary sequence y ∈ 2ω defined
by y(n) = 1 if the cardinality of the set {m ∈ n : x(m) = 1} is even is an
independent real over the ground model.

Example 1.9. (E0-forcing) Let Γ be the countable Cantor group of eventually
zero binary sequences, acting on X = 2ω by coordinatewise addition. Let E0 be
the modulo finite equality equivalence relation on X, and let G = {E0}. The
quotient poset PG has been studied in [6, Section 4.7.1] or [2, Section 10.9],
among other places.

Clearly, G is an actionable family of finitary Borel hypergraphs. It is not
subadditive as is, but it can be naturally enlarged to a subadditive family which
gives the same σ-ideal. Write Gn for the hypergraph of arity n consisting of
sets of cardinality n consisting of pairwise E0-equivalent elements (n ≥ 2), and
write H = {Gn : n ≥ 2}. Clearly, H is an actionable subadditive family of
Borel hypergraphs. Since E0 = G2, it follows that G ⊂ H and IG ⊆ IH. For
the opposite inclusion, observe that every IG-positive Borel set must have an
infinite intersection with some E0-classes, and therefore is not a Gn-anticlique
for any number n ≥ 2. It follows that IH ⊆ IG , so IG = IH. By Theorem 1.6,
the poset PG adds no independent reals.

Example 1.10. (The countable support product of E0-forcing) Let X =
∏
iXi

be the product of countably many copies of the Cantor space. Let Γ =
∏
i Γi

be the finite support product of countably many copies of the countable Cantor
group, acting on X coordinatewise. For each index i ∈ ω, let Gi be the graph on
X connecting points x0, x1 if they agree on all inputs except on i, and x0(i) and
x1(i) differ in at most finitely many entries. Let G = {Gi : i ∈ ω}. A general
theorem [7, Theorem 5.6] shows that the poset PG is naturally equivalent to the
product of countably many copies of E0-forcing in the sense that a Borel subset
of X is IG-positive if and only if it contains a product of Borel E0-positive sets.

The family G is not subadditive. However, it is immediately possible to
replace it with a subadditive family which generates the same ideal. For each
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finite set a ⊂ ω and every number n ≥ 2, let Han = {b ⊂ X : b =
∏
i ci

where for i /∈ a the set ci ⊂ Xi is a singleton and for i ∈ a the set ci ⊂ Xi

is of cardinality n consisting of pairwise modulo finite equal sequences}. Let
H = {Han : a ∈ [ω]<ℵ0 , n ≥ 2}. It is clear that H is an actionable family.
It is also subadditive by a straightforward application of the finite rectangular
Ramsey theorem. Moreover, the families G and H yield the same σ-ideal, since
G ⊂ H and every IG-positive Borel set contains a product of E0-positive Borel
sets and therefore a hyperedge in each hypergraph in H.

In consequence, Theorem 1.6 shows that the countable support product of
the E0-forcing adds no independent reals.

Simple finitary Ramsey style theorems can be used to build actionable partial
orders which do not add independent reals.

Example 1.11. (van der Waerden forcing) Let Z act on X = 2Z by shift. For
n ≥ 3, let Gn be the hypergraph of arity n consisting of all sets of type a · x
where x ∈ X is arbitrary and a ⊂ Z is an arithmetic progression of length n.
It is immediately clear that G = {Gn : n ∈ ω} is an actionable family of Borel
hypergraphs. In addition, the usual van der Waerden theorem shows that G is
subadditive. By Theorem 1.6, the quotient poset PG does not add independent
reals.

The paper uses set theoretic notation standard of [1]. The idealized forcing
background can be found in [6, Chapter 2]. If Γ is a group acting on a set X,
a ⊂ Γ is a set, and x ∈ X is a point, then I write a ·x = {γ ·x : γ ∈ a}. Similarly,
if γ ∈ Γ and B ⊂ X is a set, I write γ ·B = {γ ·x : x ∈ B}. For a finite sequence
〈γm : m ∈ n〉 of elements of Γ write

∏
m γm for their product taken in increasing

order of indices; I set
∏

0 = 1Γ. For a finite sequence 〈am : m ∈ n〉 of nonempty
finite subsets of Γ write

∏
m am for the set of all group elements of the form∏

m γm where γm ∈ am holds for all m ∈ n.

2 Proof of Theorem 1.6

Fix a Polish space X and a subadditive countable family G of Borel finitary
hypergraphs on X which is actionable, as witnessed by a Borel action of some
countable group Γ on X. Fix an arbitrary complete compatible metric on the
underlying Polish space X. Fix also an enumeration G = {Gm : m ∈ ω}.

As proved in [7, Theorem 2.2, Corollary 3.18], the poset PG is proper and
bounding. This has the following well-known consequence [6, Theorem 3.3.2]:

Fact 2.1. Whenever B ⊂ X is a Borel IG-positive set and f : B → Y is a Borel
function to another Polish space, then there is a compact IG-positive set C ⊂ B
such that f � C is continuous.

In order to prove that the poset PG does not add independent reals, I will use
the following abstract partition fact.
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Fact 2.2. Let 〈an, µn : n ∈ ω〉 be a sequence of nonempty finite sets with a
submeasure on each such that lim supn µn(an) = ∞. Suppose that f :

∏
n an ×

ω → 2 is a Borel function. Then there are nonempty finite sets bn ⊂ an for
n ∈ ω and an infinite set c ⊂ ω such that lim supn µn(bn) =∞ and the function
f is constant on

∏
n bn × c .

This is an immediate consequence of [5, Theorem 1.4]. To see why, just find
an infinite subset d ⊂ ω such that the numbers µn(an) for n ∈ d increase fast
enough for that theorem to apply, for each n /∈ d replace an with any of its
singleton subsets, naturally identify

∏
n∈ω an × ω with

∏
n∈d an × ω and apply

the theorem.
I need a certain notion of measured fusion sequence of conditions inside the

poset PG . This is codified in the following definition.

Definition 2.3. Let B ⊂ X be an IG-positive Borel set. A measured fusion
sequence below B is a sequence 〈Cn, an, µn : n ∈ ω〉 such that for every n ∈ ω,
the following holds:

1. the sets Cn are compact I-positive subsets of B decreasing with respect
to inclusion, with respective metric diameters smaller than 2−n;

2. an ⊂ Γ are nonempty finite sets and µn are submeasures on each such
that µn(an) ≥ n;

3. for all γ ∈ an, γ · Cn+1 ⊂ Cn and the action of γ on Cn+1 is continuous;

4. for all γ ∈
∏
m≤n am, the set γ · Cn+1 has metric diameter smaller than

2−n;

5. for every γ ∈
∏
m∈n am, for every m ∈ n and every set b ⊂ an such that

µn(b) ≥ 1, and for every point x ∈ Cn+1, there is a set c ⊂ b such that
c · x ∈ γ−1Gm.

Proposition 2.4. Below every Borel I-positive set B ⊂ X there is a measured
fusion sequence.

Proof. The fusion sequence is constructed by recursion. The recursion starts
with any compact IG-positive set C0 ⊂ B of metric diameter smaller than 1.
Now, suppose that Cm for m ≤ n and am for m < n have been constructed.

Let G ∈ G be a hypergraph such that no hyperedge e ∈ G can be covered
by n many sets each of which is an anticlique in one of the hypergraphs γ−1Gk
where k < n and γ ∈

∏
m∈n am. To see the key point behind the choice of the

hypergraph G, suppose that e ∈ G is a hyperedge in Cn, x ∈ e is a point, and
a ⊂ Γ is a set such that e = a · x. Then consider the pavement submeasure µ
on a in which the sets in the following collection are pavers with weight one:
{b ⊂ a : ∃γ ∈

∏
m∈n am ∃k < n b · x is a γ−1Gk-anticlique}. It will be the case

that µ(a) > n.
Now, argue that there must be a finite set a ⊂ Γ and a submeasure µ

on a such that µ(a) ≥ n, such that the Borel set Daµ = {x ∈ Cn : for all
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γ ∈
∏
m∈n am, for all m ∈ n and for all b ⊂ a such that µ(b) ≥ 1 there

is c ⊂ b such that c · x ∈ γ−1Gm} is IG-positive. To see this, consider the
Borel set A = Cn \

⋃
aµDaµ. The previous paragraph shows that A is a Borel

G-anticlique and therefore belongs to IG . If each set Daµ were IG-small, then
Cn = A∪

⋃
a,µDaµ would be a union of countably many sets in IG , contradicting

the assumption that the set Cn is IG-positive.
Let an ⊂ Γ be a finite set and µn a submeasure as in the previous paragraph.

Use Fact 2.1 to find a compact IG-positive subset Cn+1 ⊂ Cn such that for every
g ∈

∏
m≤n am the action by g is continuous on Cn+1, and the metric diameter of

the set g ·Cn+1 is smaller than 2−n. The recursion step has been performed.

Definition 2.5. Let 〈Cn, an, µn : n ∈ ω〉 be a measured fusion sequence be-
low B. The associated map is the map π :

∏
n an → B defined by π(y) =

limn

∏
m∈n y(m) · x where x ∈ X is the unique point in the intersection

⋂
n Cn.

Proposition 2.6. The associated map π is well-defined and continuous. In
addition, if 〈bn : n ∈ ω〉 is a sequence of nonempty subsets of an such that
lim supn µn(bn) =∞, then π′′

∏
n bn /∈ IG.

Proof. For the first sentence, the sets Cn ⊂ X for n ∈ ω are compact, nested,
and of decreasing metric diameter, therefore

⋂
n Cn is a singleton, containing a

unique point x ∈ X. By induction on n ∈ ω from Definition 2.3(3), one can
easily show that for every point y ∈

∏
n an and every number n ∈ ω,

∏
m∈n y(m)·

Cn is a superset of
∏
m∈n+1 y(m)·Cn+1. Thus, the sets

∏
m∈n y(m)·Cn for n ∈ ω

are compact, nested, and of decreasing metric diameter, and their intersection
is a singleton containing the unique point π(y). It also follows that the function
π is continuous.

The second sentence is more demanding. I will need the following obser-
vation. For every point y ∈

∏
n an and every number k ∈ ω write πk(y) =

limn

∏
k∈m∈n y(m) · x.

Claim 2.7. The point πk(y) ∈ X is well defined exists and belongs to the set
Ck+1. In addition,

∏
k≤m y(m) · πk(y) = π(y).

Proof. The first sentence of the claim is proved just like the first sentence of
the proposition. The second sentence follows from the fact that the action
by the group element

∏
k≤m y(m) is continuous on the set Ck by item (3) of

Definition 2.3.

Let Z =
∏
n bn, let G ∈ G be an arbitrary hypergraph, D ⊂ X be a Borel G-

anticlique, and work to show that π−1D∩Z is a set meager in Z; this will prove
the second sentence by a Baire category argument with the space Z. Suppose
towards a contradiction that the set π−1D ∩ Z is nonmeager in Z. Since this
set is Borel, it has the Baire property and it has to be comeager in some basic
open set determined by a finite tuple t of length some k such that for every
m ∈ k, t(m) ∈ bm. Extending the sequence t if necessary, I may assume that k
is greater than the index of G in the enumeration of G and µk(bk) ≥ 1 holds. By
a standard procedure, find a point y ∈

∏
n bn such that t ⊂ y, and every point in
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∏
n bn which agrees with y at every entry except possibly the k-th entry belongs

to π−1D. Consider the point πk(y) ∈ X, which belongs to Ck+1 by Claim 2.7.
By Definition 2.3(5), there is a set c ⊂ bk such that c·πk(y) ∈ (

∏
m<k y(m))−1G.

Thus,
∏
m∈k t(m) · c · πk(y) ∈ G holds. The latter set is a subset of π−1D by

the choice of the point y and the second sentence of Claim 2.7. This completes
the proof.

For the proof of Theorem 1.6, let B ⊂ X be a Borel IG-positive set and
τ be a PG-name for a subset of ω. I must find an infinite subset c ⊂ ω and
a condition stronger than B which forces c either to be disjoint from τ or to
be a subset of τ . To do this, use the Borel reading of names to thin out B if
necessary and find a Borel function h : B → P(ω) such that B 
 τ = h(ẋgen).
Let 〈Cn, an, µn : n ∈ ω〉 be a fusion sequence below B, and π :

∏
n an → B

the associated map. Let f :
∏
n an × ω → 2 be the Borel function defined by

f(y, n) = 1 if n ∈ h(π(y)). By Fact 2.2, there are nonempty sets bn ⊂ an for
n ∈ ω and an infinite set c ⊂ ω such that lim supn µn(bn) =∞ and f is constant
on

∏
n bn × c.

By Proposition 2.6, the set C = π′′
∏
n bn ⊂ B is compact and IG-positive.

A standard Mostowski absoluteness argument shows that either C 
 č ⊂ τ or
č ∩ τ = 0 depending on the constant value the function f takes on

∏
n bn × c.

This completes the proof of Theorem 1.6.

3 Proof of Theorem 1.7

Suppose that X is a Polish space and G is a countable collecton of Borel finitary
hypergraphs which is actionable, as witnessed by a Borel action of a countable
group Γ on the space X. Suppose that the quotient poset PG adds no indepen-
dent reals. For every finite collection a ⊂ G and every number n ∈ ω let Han

be the hypergraph of all finite subsets b ⊂ X which consist of pairwise orbit
equivalent elements which cannot be covered by n-many sets each of which is
an anticlique for some hypergraph in the set a. (It may occur that Han = 0.)
Let H = G ∪ {Han : a ⊂ G is finite and n ∈ ω}.

Proposition 3.1. The set H is a countable actionable subadditive collection of
finitary Borel hypergraphs on X.

Proof. It is immediate from the definition that each hypergraph Han is Borel.
By definitions, each hyperedge in Han is finite and consists of pairwise orbit
equivalent elements of X. If γ ∈ Γ is any element, then γ · Han = Hγ·a,n, so
the family H is actionable since G is. Finally, I must check that the family H is
subadditive.

This is again immediate from the definitions. Let b ⊂ H be a finite set and
let m ∈ ω be a number. Consider the hypergraph Han where a ⊂ G is the finite
set of all hypergraphs in G mentioned in the set b, either elements of b or in
the subscript of an element of b. Moreover, n is a number larger than the sum
of all numbers mentioned in the subscripts of elements of b plus |b|. It is not
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difficult to see that the hypergraph Han works as required in the definition of
subadditivity.

In view of the proposition, to prove Theorem 1.7 it is enough to show that
IG = IH. Suppose towards a contradiction that this fails. Since G ⊂ H, it
must be the case that there is a Borel set B ⊂ X which belongs to IH but
not to IG . A countable additivity of the σ-ideals shows that thinning down the
set B if necessary, one may find a finite set a ⊂ G and a number n ∈ ω such
that B is an Han-anticlique. The following general proposition is a key to the
proof. Recall that a countable Borel equivalence relation is hyperfinite if it is
an increasing union of a countable sequence of Borel equivalence relations all of
whose equivalence classes are finite.

Proposition 3.2. There is a Borel IG-positive set C ⊂ B such that the Γ-orbit
equivalence relation on C is hyperfinite.

Proof. Let M be a countable elementary submodel of a large enough structure
containing among others X,G,Γ, and B. Let Y be the Polish space of all M -
generic filters on PG ∩M , equipped with the usual topology in which the basic
open sets are the sets of filters containing a given condition. Let h : Y → X be
the function assigning to a filter y ∈ Y the unique element of X contained in all
conditions in y. It is easy to check that the function h is injective and continuous.
Consider the countable Borel equivalence relation F on Y connecting y0, y1 if
h(y0) and h(y1) ∈ X are Γ-orbit equivalent.

By a well-known and several times rediscovered result [3, Theorem 12.1],
there is a co-meager Borel set D ⊂ Y such that F � D is hyperfinite. The set
C = {h(y) : y ∈ D,B ∈ y} is a continuous injective image of a relatively open
subset of the Borel set D and as such is Borel. The Γ-orbit equivalence relation
on D is hyperfinite. Thus, it is enough to show that C is IG-positive.

For this, by the Baire category theorem applied with the space Y it is enough
to show that for every hypergraph G ∈ G the h-preimage of any Borel G-
anticlique is meager in Y . Suppose towards a contradiction that A ⊂ X is a
Borel G-anticlique whose h-preimage is not meager, and therefore co-meager in
some nonempty open set {y ∈ Y : B0 ∈ y} ⊂ Y for some condition B0. There
must be a finite set a ⊂ Γ such that the Borel set Ba = {x ∈ B0 : a · x ⊂
B0 and a · x ∈ G} is IG-positive: otherwise the set B0 would be a union of
countably many IG-small sets and a Borel G-anticlique, which would contradict
the positivity of B0.

Pick a finite set a ⊂ Γ as in the previous paragraph. Note that for every
γ ∈ a, the action of γ on X naturally extends to an action on Borel subsets of
X to a permutation of the poset PG ∩M , and finally to a self-homeomorphism
of the space Y . Thus, by a standard argument it is possible to find a filter
y ∈ Y containing Ba such that for each γ ∈ a, the filter γ · y belongs to the
relatively co-meager set h−1A. But then, h′′a · y is a G-hyperedge in the set A,
contradicting the initial assumptions on the set A.

Let C ⊂ B be a Borel IG-positive Borel set as in the proposition, and let
〈Em : m ∈ ω〉 be an increasing sequence of Borel equivalence relations with
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finite classes on the set C such that
⋃
mEm is the Γ-orbit equivalence relation

restricted to the set C. Since the set C is a Han-anticlique, for each m ∈ ω, each
Em-class c ⊂ C can be covered by n many sets each of which is an anticlique
in one of the hypergraphs in the set a. By an application of the Lusin–Novikov
theorem, for each m ∈ ω there is a Borel function fm with domain [C]<ℵ0 which
to each Em-class c assigns such a cover. More specifically, the value fm(c)
is a function from c to n × a such that for each i ∈ n and G ∈ a, the set
{x ∈ c : fm(c)(x) = 〈i, G〉} is a G-anticlique.

Define a Borel function h : C → (n×a)ω by setting h(x)(m) = fm([x]Em
)(x).

Since the poset PG does not add independent reals, there must be a Borel IG-
positive set D ⊂ C, an infinite set d ⊂ ω, and a pair 〈i, G〉 ∈ n × a such that
for each m ∈ dom(f) and each x ∈ D, h(x)(m) = 〈i, G〉. Since the set D is
IG-positive, there must be a G-hyperedge e ⊂ D. Since all elements of e are
pairwise orbit equivalent and the equivalence relations Em for m ∈ d exhaust
the orbit equivalence relation, there must be a number m ∈ d and an Em-class
c such that e ⊂ c. Then, for each x ∈ e, it is the case that fm(c)(x) = 〈i, G〉.
The choice of the function fm implies that e is a G-anticlique, which it is not.
This contradiction completes the proof of Theorem 1.7.
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