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Preface

This book is a contribution to the classification theory of analytic equivalence
relations in descriptive set theory. It shows that set theoretic techniques nor-
mally associated with the axiom of choice and combinatorics of uncountable
cardinals can be efficiently used to prove new and difficult theorems about the
structure of analytic equivalence relations. In many respects, this contradicts
the conventional wisdom, which holds that the study of analytic equivalence
relations is purely a matter of descriptive set theory and mathematical analy-
sis and therefore impervious to efforts of combinatorial set theory. Thus, the
resulting landscape is entirely unexpected and shows much promise for further
investigation.
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Chapter 1

Introduction

The theory of analytic equivalence relations has experienced a fast rate of growth
in the last two decades, primarily due to its ability to connect many fields of
mathematics in a substantial way [6, 12, 3, 13, 7]. It rates equivalence problems
in mathematical analysis according to their intuitive complexity. Equivalence
problems are understood to be analytic equivalence relations on Polish spaces.
For such equivalence relations E,F on respective Polish spaces X,Y , write E ≤B

F if there is a Borel reduction of E to F , i.e. a Borel map h : X → Y such
that for all points x0, x1 ∈ X, x0 E x1 iff h(x0) F h(x1). The relation ≤B is a
quasiordering, and the main tasks of the theory of analytic equivalence relations
are placing known equivalence relations into this quasiorder and finding other
informative features of ≤B. Proving that a given analytic equivalence relation
is Borel reducible to another one may be difficult, but the methodology of such
a task is typically straightforward. The negative results (showing that a given
equivalence relation is not reducible to another one) are typically much more
challenging, and more often than not tools from mathematical logic are used.

In this book, I discuss several approaches for proving nonreducibility results
using the method of forcing. In their majority, they go against the conventional
wisdom in that they introduce reducibility invariants that are evaluated with
the help of Axiom of Choice, and their valuation is not absolute among forcing
extensions of the universe. Despite that, they are natural and useful; in the
traditional descriptive set theoretic context, they seem to carry little content.
In a good number of cases, an absolute and descriptive set theoretic result, such
as nonreducibility of one analytic equivalence relation to another, is naturally
obtained via comparison between sophisticated forcing extensions concerning
issues high in the cumulative hierarchy.

Chapter 2 contains some useful preliminary generalities on forcing. In Chap-
ters 3, 4 and 5 I analyze the concept of unpinned equivalence relations that
first appeared in the work of Greg Hjorth. The current general definition is due
to Kanovei:

Definition 1.0.1. [12, Chapter 17] Let E be an analytic equivalence relation
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on a Polish space X. Let P be a poset and τ a P -name for an element of Ẋ.
The name τ is (E-)pinned if P × P 
 τleft Ė τright. The name is (E-)trivial if

P 
 τ Ė x̌ for some ground model element x ∈ X. The equivalence relation
E is pinned if all E-pinned names on all posets are E-trivial. Otherwise, E is
unpinned.

The main point behind this concept is the fact that the class of pinned equiva-
lence relations is closed downwards under Borel reducibility. Thus for example
proving that the equivalence relation EKσ is pinned while F2 is not yielded a con-
ceptual proof of Borel nonreducibility of the latter to the former [12, Theorem
17.1.4]. Kechris conjectured that for Borel equivalence relations E, F2 ≤B E is
in fact equivalent to the statement that E is unpinned. While this is false in
ZFC [27], I show that in fairly common choiceless contexts this is in fact true:

Theorem 1.0.2. (Corollary 3.4.2) In the choiceless Solovay model derived from
a measurable cardinal, whenever E is a Borel equivalence relation then E is
unpinned if and only if F2 ≤B E.

I also show that the unpinned status of an analytic equivalence relation is suit-
ably absolute and that it is detected by posets of size ℵ1. I proceed to refine the
pinned concept to obtain a number of new nonreducibility results. The under-
lying idea is the following extension of the equivalence relation E to the space
of all pinned names:

Definition 1.0.3. Let E be an analytic equivalence relation on a Polish space
X, and let τ, σ be E-pinned names on respective posets P,Q. Say that 〈P, τ〉 Ē
〈Q, σ〉 holds if P ×Q 
 τ E σ.

It turns out that Ē is an equivalence relation and it is interesting to count
the number of its equivalence classes. One possible way of doing so uses the
following central definition.

Definition 1.0.4. Let E be an analytic equivalence relation on a Polish space
X. The pinned cardinal of E, κ(E) is the smallest cardinal κ such that every
E-pinned name is Ē-equivalent to a name on a poset of size < κ if such κ exists;
otherwise κ(E) =∞. If E is pinned then write κ(E) = ℵ1.

The main point of this definition is again the fact that the pinned cardinal is a
Borel reducibility invariant–E ≤B F implies κ(E) ≤ κ(F ). Thus, the evaluation
of the pinned cardinal again leads to nonreducibility results. It turns out that
the pinned cardinal can attain fairly exotic values for quite simple equivalence
relations, obtaining some sort of parallel of Shelah’s classification theory of
models for analytic equivalence relations. For example,

Theorem 1.0.5. (Corollary 4.4.8 and 4.4.10) For every countable ordinal α > 0
there is a Borel equivalence relation Eα such that (ZFC provably) κ(Eα) = ℵα.
There are Borel equivalence relations E and F such that (ZFC provably) κ(E) =
(ℵℵ0ω )+ and κ(F ) = max(ℵω+1, c)

+.
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One curious feature of the pinned cardinal is that the comparison of its values
may differ in different forcing extensions, which opens the gate towards methods
that were heretofore considered irrelevant for the theory of analytic equivalence
relations. For example, the natural proof of nonreducibility of E to F uses the
independence of the Singular Cardinal Hypothesis at ℵω.

Chapter 5 looks at unpinned equivalence relations from a different direction.
What is the nature of forcings that can carry nontrivial pinned names? It turns
out that notrivial pinned names for orbit equivalence relations are essentially
cardinal collapse names–Theorem 5.2.1. On the other hand, there are equiva-
lence relations for which say Namba forcing can carry a nontrivial pinned name.
This leads to an ergodicity result for such equivalence relations.

Definition 1.0.6. The mutual domination equivalence relation E on X =
(ωω)ω connects points x, y ∈ X if for every n ∈ ω there are m0,m1 ∈ ω such
that x(m0) modulo finite dominates y(n) and y(m1) modulo finite dominates
x(n).

Theorem 1.0.7. (Theorem 5.3.3 simplified.) The mutual domination equiv-
alence relation is F -I-ergodic for every orbit equivalence relation F of a con-
tinuous action of a Polish group, where I is the mutual domination ideal on
X.

Chapters 6 and 7 deal with generalizations of another concept of Greg
Hjorth–turbulence of Polish group actions. The main motivating result can
be phrased as follows.

Theorem 1.0.8. (Theorem 6.1.2 simplified.) If E is an orbit equivalence rela-
tion on a Polish space X obtained from a generically turbulent action, then in
a Cohen forcing extension there are points x0, x1 ∈ X such that

1. x0 E x1;

2. there is no element of the ground model E-related to x0, x1;

3. V [x0] ∩ V [x1] = V .

This immediately motivates the definition of the class of trim equivalence rela-
tions:

Definition 1.0.9. An equivalence relation E on a Polish space X is (proper)-
trim if for all (proper forcing) generic extensions V [G] and V [H] and all E-
related points x ∈ V [G] and y ∈ V [H], either V [G] ∩ V [H] = V or there is a
point x ∈ V which is E-related to both x, y.

The class of proper-trim equivalence relations is closed under Borel reducibil-
ity. It includes in particular all equivalence relations classifiable by countable
structures–Theorem 6.6.1, but also many other natural analytic equivalence re-
lations as described in Section 6.6. Thus, the following theorem greatly extends
the motivational Hjorth’s ergodicity result [12, Lemma 13.3.4].
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Theorem 1.0.10. (Theorem 7.1.1) If E is an orbit equivalence relation on a
Polish space X obtained from a generically turbulent action, and F is a proper-
trim equivalence relation then E is generically F -ergodic.

Chapter 7 contains a number of other ergodicity results obtained through mod-
ifications of the trim concept. They often concern the equivalence relations
of the form =J on 2ω, where J is an analytic ideal on ω and x =J y if
{n ∈ ω : x(n) 6= y(n)} ∈ J .

Theorem 1.0.11. (Corollary 7.1.17 simplified) Let J be the ideal of subsets of
ω of asymptotic density zero. Then =J is EKσ -generically ergodic.

Investigating the possibilities for the random forcing, one can obtain measure-
style ergodicity results, which are entirely out of the scope of the turbulence
method. For example:

Theorem 1.0.12. (Corollary 7.2.9) Let J be the ideal of summable subsets of
ω. Let µ be the usual Borel probability measure on 2ω. Then =J is F -µ-ergodic
for every proper-trim equivalence relation F .

Theorem 1.0.13. (Corollary 7.2.17 simplified) Let J be the ideal of subsets of
ω of asymptotic density zero. Let µ be the usual Borel probability measure on
2ω. Then =J is EKσ -µ-ergodic.

In Chapter 8, I introduce several other forcing-type Borel reducibility invari-
ants that are so far not as well developed. Section 8.1 introduces an invariant
which among other things leads to an exceptionally short proof of nonreducibil-
ity of E1 to any orbit equivalence relation induced by a continuous action of a
Polish group–Corollary 8.1.9. It also proves nonreducibility results complemen-
tary to the ergodicity results of Chapter 7. Section 8.2 introduces a reducibility
cardinal invariant non(E) reminiscent of the usual invariants of the real line such
as in [2], and separation-type reducibility invariant resulting from an attempt to
generalize Martin-Solovay c.c.c. coding procedure to quotient spaces X/E for
analytic equivalence relations E. The closely related Section 8.3 introduces ideal
sequences, which connect analytic equivalence relations with ideals such as the
nonstationary ideal on various regular uncountable cardinals. These concepts
are all closely connected to the pinned concept:

Theorem 1.0.14. (Theorems 8.2.7 and 8.3.10) If E is an unpinned equivalence
relation then non(E) = ℵ1 and it has an I-sequence, where I is the nonstationary
ideal on ω1.

Finally, Section 8.4 introduces another reducibility invariant, that of linear or-
derability in various choiceless models of ZF set theory. The verification of
this invariant again boils down to investigation of names for elements of the
underlying Polish space in various forcing notions.



Chapter 2

Preliminaries

2.1 Descriptive set theory

The notation used in the book follows the set theoretic standard of [10]. For
functions p, q I write p rew q for the function r such that dom(r) = dom(p) ∪
dom(q), r is equal to q on dom(q), and and r is equal to p on dom(p) \ dom(q).
A tree is a set of finite sequences closed under initial segment. For a tree
T , [T ] stands for the set of all infinite branches of T . If t ∈ T then [t] is
the set of all branches in [T ] extending the node t. For any countable set C,
the set 2C is equipped with the usual compact topology generated by all sets
Os = {x ∈ 2C : s ⊂ x} for every finite partial function s : C → 2. The set 2C is
also equipped with the natural product Borel probability measure µ for which
µ(Os) = 2−|s|.

The following definition provides a catalogue of benchmark ideals on ω used
in this book.

Definition 2.1.1. 1. the summable ideal is the ideal consisting of sets a ⊂ ω
such that the sum Σ{1/n+ 1 : n ∈ a} is finite.

2. the density zero ideal is the ideal of sets a ⊂ ω such that limn
|a∩n|
n = 0.

3. the random graph ideal is the ideal generated by cliques and anticliques of
a random graph on ω. Since any two random graphs on ω are isomorphic,
this is well-defined up to permutation of ω.

4. the branch ideal is the ideal on 2<ω generated by branches of 2<ω.

The following definition provides a catalogue of benchmark equivalence relations
used throughout the book.

Definition 2.1.2. 1. E0 is the relation on 2ω defined by x E0 y if {n ∈ ω :
x(n) 6= y(n)} is finite;

2. E1 is the relation on (2ω)ω defined by x E0 y if {n ∈ ω : x(n) 6= y(n)} is
finite;

5
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3. F2 is the relation on (2ω)ω defined by x F2 y if rng(x) = rng(y);

4. EKσ is the relation on ωω defined by x EKσ y if the numbers |x(n)−y(n)|
for n ∈ ω are bounded;

5. if J is an ideal on a countable set c then =J is the equivalence on 2c

defined by x =J y if {i ∈ c : x(i) 6= y(i)} ∈ J . The equivalence =2ω

J is
defined on (2ω)c in the same way.

6. Eω1 is the equivalence on binary relations on ω connecting x, y if either
both x, y are not wellorders or they are isomorphic.

7. ES∞ is the equivalence of isomorphism of binary relations on ω.

8. if E is an analytic equivalence relation on a Polish space X then its
Friedman–Stanley jump, the equivalence relation E+ on Xω is defined
by y E+ z if [rng(y)]E = [rng(z)]E .

The analytic equivalence relations in this book are quasi-ordered by Borel
reducibility. There is also a different useful quasiorder, that of weak Borel
reducibility.

Definition 2.1.3. Let E,F be analytic equivalence relations on respective Pol-
ish spaces X,Y .

1. Say that E is Borel reducible to F , E ≤B F , if there is a Borel reduction
of E to F , which is a Borel function h : X → Y such that for every
x0, x1 ∈ X, x0 E x1 iff h(x0) F h(x1).

2. Say that E is weakly Borel reducible to F, E ≤wB F , if there is a Borel
weak reduction of E to F , which is a Borel function h : X → Y such that
for some set A ⊂ X covered by countably many E-equivalence classes, for
every x0, x1 ∈ X \A, x0 E x1 iff h(x0) F h(x1).

Clearly, weak Borel reducibility and Borel reducibility coincide if the lower
equivalence relation E is Borel. For analytic equivalence relations, the two
notions may differ. For example, Eω1

is weakly Borel reducible to ES∞ by the
identity map, but there is no Borel reduction: this happens because Eω1

has
one non-Borel class, while all ES∞-classes are Borel.

A great deal of this book is concerned with homomorphisms between equiv-
alence relations:

Definition 2.1.4. Let E,F be equivalence relations on respective Polish spaces
X,Y . A homomorphism of E to F is a map h : X → Y such that for every
x0, x1 ∈ X, if x0 E x1 then h(x0) F h(x1).

In several places I will need an extension lemma for partial Borel homomor-
phisms. This is a straightforward application of the first reflection theorem:
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Lemma 2.1.5. Let E be an analytic equivalence relation on a Polish space X,
and F a Borel orbit equivalence relation of a continuous Polish group action on
a Polish space Y . Every partial Borel homomorphism of E to F can be extended
to a total one.

The difficulty is that the domain of the partial homomorphism may not be an
E-invariant set.

Proof. Let I be the collection of all analytic sets A ⊂ X×Y such that whenever
〈x0, y0〉 and 〈x1, y1〉 are elements of A and x0 E x1, then y0 F y1. The syntax
of the definition of I shows that it is a Π1

1 on Σ1
1 collection of analytic sets

closed under increasing countable unions. Now let h : X → Y be a partial
homomorphism of E to F . By induction build sets B0 ⊂ A0 ⊂ B1 ⊂ A1 ⊂
B2 ⊂ . . . so that

• An, Bn ∈ I;

• B0 = h, An is the E × F -saturation of Bn, and Bn is Borel.

This is certainly possible–the Borel set Bn+1 is obtained from An by an appli-
cation of the first reflection theorem [14, Theorem 35.10] to the collection I. In
the end, let B =

⋃
nBn. This is a Borel set in I whose vertical sections are

either empty or else consist of a single F -equivalence class, and whose projec-
tion is E-saturated. Since F is an orbit equivalence relation, id×F is idealistic
in the sense of [6, Definition 5.4.9]. As id × F � B is smooth, by [6, Theorem
5.4.11] there is a Borel uniformization k of the set B. Now define a totalization
h̄ of the homomorphism h by setting h̄(x) = h(x) if x ∈ dom(h), h̄(x) = k(x) if
x ∈ dom(k) \ dom(h), and h̄(x) = any fixed element of Y if x /∈ dom(k). This
works.

2.2 Forcing

I use the standard textbook [10] as a reference for basic forcing terminology and
facts. I will start with a definition of a Cohen forcing associated with a specific
Polish space.

Definition 2.2.1. Let X be a Polish space. The Cohen poset PX consists of
nonempty open subsets of X ordered by inclusion.

Note that for any choice of countable basis for X, the basis is dense in PX
and therefore the poset PX has countable density. In the common case of a
perfect space X, the poset PX has no atoms and it is therefore in forcing sense
equivalent to Cohen forcing. It adds a single element of the space X, typically
denoted by ẋgen , which belongs to the intersection of all open sets in the generic
filter. A point x ∈ X is PX -generic over a model of ZF if and only if it belongs
to all open dense subsets of X coded in the model.
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Definition 2.2.2. Let κ be a set. The collapse Coll(ω, κ) is the poset consisting
of all finite partial functions from ω to κ ordered by reverse inclusion.

The following fact summarizes the commonly known properties of the collapse
used in this book.

Fact 2.2.3. [10, Lemma 26.7, Corollary 26.8] Let κ be an infinite cardinal.

1. P is up to forcing equivalence the only poset of size κ which forces |κ| = ℵ0;

2. if P is a partial order of size ≤ κ then P can be regularly embedded into
RO(Coll(ω, κ));

3. if P is any partial order of size < κ regularly embedded in RO(ω, κ) then
the remainder forcing is isomorphic to Coll(ω, κ).

Definition 2.2.4. Let κ be a strongly inaccessible cardinal. The Lévy collapse
Coll(ω,< κ) is the finite support product

∏
α∈κ Coll(ω, α).

Fact 2.2.5. Let κ be a strongly inaccessible cardinal.

1. Coll(ω,< κ) is κ-c.c. and it forces κ̌ = ℵ1;

2. if P is a poset of size < κ, G ⊂ Coll(ω,< κ) is a filter generic over V , and
H ⊂ P is a filter generic over V in V [G], then V [G] is a Coll(ω,< κ)-
extension of V [H].

One forcing tool commonly used throughout the book is product forcing.
For the terminology, if P is a poset, then the product P ×P as a forcing notion
adds two generic filters on P , one on the left copy of P and the other on the
right copy. If P is a poset and τ is a P -name, τleft is the P × P name for the
evaluation of τ according to the left generic filter and τright is the P × P name
for the evaluation of τ according to the right generic filter.

Fact 2.2.6. (Product forcing theorem, [10, Lemma 15.9]) If P,Q are partial
orders and G ⊂ P and H ⊂ Q are filters, then the following are equivalent:

1. G×H ⊂ P ×Q is a generic filter over V ;

2. G ⊂ P is a generic filter over V and H ⊂ Q is a generic filter over V [G].

In either case, V [G] ∩ V [H] = V .

Lemma 2.2.7. Suppose that P,Q are posets and G × H ⊂ P × Q is a filter
generic over V . Suppose that P0, Q0 are posets in V and G0 ⊂ P0 in V [G] and
H0 ⊂ Q0 in V [H] are filters generic over V . Then G0 × H0 ⊂ P0 × Q0 is a
filter generic over V .



2.2. FORCING 9

Proof. Suppose that p ∈ P , q ∈ Q, τ is a P -name, σ is aQ-name, and p 
 τ ⊂ P̌0

is a generic filter over V , and q ` σ ⊂ Q̌0 is a generic filter over V . Let
D ⊂ P0 ×Q0 be an open dense set. I must find a condition 〈p0, q0〉 ∈ D as well
as p′ ≤ p, q′ ≤ q such that p′ 
 p̌0 ∈ τ in P and q′ 
 q̌0 ∈ σ in Q. Then, a
straightforward density argument completes the proof of the lemma.

There are conditions pr(p) ∈ P0 and pr(q) ∈ Q0 such that for every condition
r ≤ pr(p0) in P0 there is p′ ≤ p such that p′ 
 ř ∈ τ in P , and for every condition
r ≤ pr(q0) in Q0 there is q′ ≤ q such that q′ 
 ř ∈ σ in Q. Find a condition
〈p0, q0〉 ∈ D which is below 〈pr(p), pr(q)〉 in the poset P0 ×Q0. Use the choice
of pr(p) and pr(q) to find conditions p′ ≤ p in P and q′ ≤ q in Q such that
p′ 
 p̌0 ∈ τ and q′ 
 q̌0 ∈ σ as desired.

Lemma 2.2.8. Whenever M is a countable model of ZF and P ∈M is a partial
order, then there is a continuous map f : 2ω → P(P ) such that for every finite
tuple 〈zi : i ∈ n〉 of pairwise distinct elements of 2ω the sets 〈f(zi) : i ∈ n〉 are
mutually generic over the model M .

Proof. Let 〈an, Dn : n ∈ ω〉 enumerate with repetitions all pairs 〈a,D〉 such
that a ⊂ 2<ω is a finite sequence of pairwise distinct binary sequences of the
same length, and D ⊂ P |a| is an open dense set in M . By induction on n ∈ ω
build conditions ps ∈ P for s ∈ 2n so that

• s ⊂ t implies pt ≤ ps;

• whenever 〈si : i ∈ |an|〉 is a sequence of binary strings of length n such
that a(i) ⊂ si, then 〈psi : i ∈ |a|〉 ∈ Dn.

This is easily done. Once the induction has been performed, let f : 2ω →
P(P ) assign to every binary sequence x ∈ 2ω the filter on P generated by the
conditions {px�n : n ∈ ω}. This is easily seen to work.

Let P,Q,R be posets such that both P,Q are regular subposets of R. Say
that P,Q are independent in R if R 
 V [Ġ ∩ P̌ ] ∩ V [Ġ ∩ Q̌] = V , where Ġ is
the usual R-name for the R-generic filter over V .

Lemma 2.2.9. Suppose that M,N are transitive models of set theory such that
M ⊂ N . Suppose that P,Q,R ∈ N are posets such that N satisfies “P,Q are
regular subposets of R and they are independent in R”. Then M satisfies the
same sentence.

Proof. I will first restate the independence in terms of complete Boolean alge-
bras, removing the forcing relation. If A is a subalgebra of C and c ∈ C is a
nonzero element, write Ac for the algebra of all elements of the form a ∧ c for
a ∈ A; so c = 1Ac . If A is a complete subalgebra of C then Ac is a complete
subalgebra of Cc.

Claim 2.2.10. Suppose that A,B are complete subalgebras of a complete Boolean
algebra C. The following are equivalent:
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1. A,B are independent in C;

2. for every c ∈ C, the algebra Ac ∩Bc contains an atom.

Observe that the intersection of two complete subalgebras is again a complete
subalgebra, so Ac ∩Bc is in fact a complete subalgebra of Cc.

Proof. Suppose first that (2) fails; i.e. there is c ∈ C such that the algebra Ac∩
Bc is atomless. Let Ḣ be the name for Ġ∩Ac∩Bc. Then c 
C Ḣ /∈ V , since Ḣ is
a filter on an atomless Boolean algebra generic over V . Also, c 
C Ḣ ∈ V [Ġ∩A],
since it can be reconstructed there as the set {a ∧ c : a ∈ Ġ ∩ Ǎ, a ∩ c ∈ B̌c}.
For the same reason c 
C Ḣ ∈ V [Ġ∩B] and so A,B are not independent in C.

Suppose on the other hand that (2) holds and c ∈ C and τ is an A-name
for a set of ordinals and σ is a B-name for a set of ordinals and c 
C τ = σ.
I must find a condition d ≤ c that decides the membership of all ordinals in τ ;
this will show that d 
 τ ∈ V and by the obvious density and ∈-minimalization
arguments it will prove the independence of A and B. Note that for every
ordinal α, the Boolean values |α̌ ∈ τ | and |α̌ ∈ σ| are the same in Cc. Since τ
is an Ac-name, it must be the case that |α̌ ∈ τ | ∈ Ac; since σ is an Bc-name,
it must be the case that |α̌ ∈ σ| ∈ Bc and so these Boolean values belong to
Ac ∩ Bc. Thus, if d ≤ c is an atom of Ac ∩ Bc, d must decide the membership
of every ordinal in τ (and σ) and so d 
 τ ∈ V as desired.

The Boolean characterization of independence in Claim 2.2.10 depends on
the evaluation of the intersection of complete Boolean subalgebras. I will now
show that the evaluation of intersection is absolute between models of set theory
in a suitable sense.

Claim 2.2.11. Let M ⊂ N be ω-models of set theory. Let A,B,C be Boolean
algebras in M such that M |= C is complete and A,B are its complete subal-
gebras. In N , let C̄ be a completion of C and Ā, B̄ be the completions of A,B
inside C̄. Then A,B,C,A ∩B are respectively dense in Ā, B̄, C̄, Ā ∩ B̄.

Proof. Every Boolean algebra is dense in its completion, so C is dense in C̄.
Since M |= A ⊂ C is complete, it is also the case that M |= A ⊂ C is regular.
Being a regular subalgebra is a first order statement (for every c ∈ C+ there
is a ∈ A+ such that every nonzero a′ ≤ a in A is compatible with c), and so
N |= A ⊂ C is regular as well. A regular subalgebra is dense in its completion
in the ambient algebra [10, Exercise 7.31], and this fact applied in the model N
shows that A ⊂ Ā is dense. Similarly, B ⊂ B̄ is dense.

The most important part of the claim is proving that A∩B is dense in Ā∩B̄.
For this, define the projection of C to A in the model M : pM (c, A) =

∑
{a ∈ A :

every extension of a in A is compatible with c} for every c ∈ C. Define also the
projection of C̄ into Ā in the model N : pN (c, Ā) =

∑
{a ∈ Ā : every extension

of a in Ā is compatible with c}. As A ⊂ Ā is dense, for every c ∈ C it is the case
that pM (c, A) = pN (c, Ā), and I will write p(c, A) ∈ A for this common value.
Similar usage will prevail for p(c,B) ∈ B for c ∈ C.
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To show that A∩B is dense in Ā∩ B̄, suppose that c ∈ Ā∩ B̄ is an arbitrary
nonzero element. Find c′ ∈ C with c′ ≤ c. Construct a sequence an, bn so that

• an ∈ A, bn ∈ B, c′ ≤ a0 ≤ b0 ≤ a1 ≤ b1 ≤ . . . ;

• a0 = p(c′, A), bn = p(an, B), and an+1 = p(bn, A).

Observe that bn = p(an, B̄) and an+1 = p(bn, Ā) and so by induction on n
it follows that all the elements an, bn must stay below c. Let d = supn an =
supn bn. Since the sequences an, bn are both in the smaller model M , it is also
the case that d ∈ N and d ∈ A ∩ B. Since d ≤ c and c ∈ Ā ∩ B̄ was arbitrary,
it follows that A ∩B is dense in Ā ∩ B̄.

Now suppose that M ⊂ N are transitive models and P,Q,R are posets
in M such that M satisfies that P,Q are regular independent subposets of
R. Passing to completions if necessary, I may assume that P,Q,R are in fact
complete Boolean algebras in the model M . Work in the model N . Consider
the completion R̄ of R and the completions P̄ , Q̄ of P and Q inside R. It
follows from Claim 2.2.11 that forcing with R gives the same generic extensions
as forcing with R̄. Also, the property of Claim 2.2.10(2) transfers from P ∩ Q
to P̄ ∩ Q̄, since P ∩Q is dense in P̄ ∩ Q̄ by Claim 2.2.11 again. Thus, P̄ and Q̄
are independent subposets of R̄ in the model N , and so P,Q are independent
subposets of R in N as well.

2.3 Descriptive set theory in forcing extensions

The main proof tool used in this book is the interpretation of notions of descrip-
tive set theory in various models of set theory and comparison of the results.
The following classical absoluteness results are central:

Fact 2.3.1. (Borel absoluteness) Let α be a countable ordinal, M a model of
ZF+DC such that α + ω + 1 is isomorphic to an initial segment of ordinals of
M , and M |= B ⊂ X is a Π0

α subset of a Polish space. If x ∈ X is in M then
x ∈ B if and only if M |= x ∈ B.

The proof is a straightforward induction on α and as such is left to the reader.

Fact 2.3.2. (Mostowski absoluteness) Let φ be a Σ1
1 formula with some free

variables, M a transitive model of ZF+DC, and ~x a sequence of elements of
ωω ∩M . Then φ(~x) holds if and only if M |= φ(~x).

Fact 2.3.3. (Shoenfield absoluteness) Let φ be a Π1
2 formula with some free

variables, M a transitive model of ZF+DC containing ω1 as a subset, and ~x a
sequence of elements of ωω ∩M . Then φ(~x) holds if and only if M |= φ(~x).

Let X be a Polish space and A ⊂ X its analytic subset. I must make
precise what it means to reinterpret the Polish space and the analytic set in
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various models of set theory, typically generic extensions. This leads to a rather
abstract and intelectually somewhat sterile discussion. All of these concerns
trivialize if the reader ignores Polish spaces other than the recursively presented
ones, whose interpretations can be simply taken to be their definitions in the
respective models.

Definition 2.3.4. Let M be an ω-model of ZFC, M |= X is a Polish space.

1. Let X̂ be a Polish space. A map φ : X → X̂ is an interpretation of X
if there are an M -complete compatible metric d on X and a complete
compatible metric e on X̂ such that φ is a distance-preserving map from
〈X, d〉 to 〈X̂, e〉 with dense range.

2. If M |= C ⊂ X is a closed set, the interpretation of C is the closure of
φ′′C in X̂.

3. If M |= A ⊂ X is a closed set, A = p(C) for some closed subset of X × Y ,
then the interpretation of A is the set p(Ĉ), where Ĉ is the interpretation
of C in some product X̂ × Ŷ .

The Shoenfield absoluteness provides the tools for showing that the interpreta-
tions have the uniqueness properties that one comes to expect as soon as the
model M is regular enough:

Fact 2.3.5. Suppose that the wellfounded part of M contains ω1 as a subset.
Interpretations of Polish spaces are unique up to a unique homeomorphism.
Interpretations of analytic sets do not depend on the choice of the projecting
closed sets.

One way in which this fact is used is the notation for Polish spaces and their
analytic subsets in generic extensions. If X is a Polish space, A ⊂ X is an
analytic set, P is a poset and G ⊂ P is a generic filter over V , I will abuse the
notation by using the letters X and A to denote the interpretations of X and
A in V [G], which are unique up to unique homeomorphisms.

Another way of using this fact is the following. If X is a Polish space, M is a
countable elementary submodel of a large structure containing M , π : M → N is
its transitive collapse, and N [g] is a generic extension of N , then π−1 : π(X)→
X is an interpretation of π(X) in V . Also, if φ : π(X)→ Y is an interpretation
of π(X) in the model N [g], there is a unique continuous map ψ : Y → X such
that π−1 = ψ ◦ φ and it is an interpretation of Y in V . Thus, I will abuse the
notation by considering the (interpretation of) the space X in the model N [g]
as a subset of the space X.

The main absoluteness fact used tacitly in the book in many places is the
following:

Fact 2.3.6. If E,F are analytic equivalence relations on respective Polish spaces
X,Y , E ≤B F , and h : X → Y is a Borel reduction of E to F , then h remains
a Borel reduction of E to F in any generic extension. The same holds for weak
Borel reductions.
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Proof. I will deal with the more difficult case of weak Borel reductions. Suppose
that a ⊂ X is a countable set and h : X → Y is a Borel function which
is a reduction of E to F outside of the set [a]E . An elementary complexity
computation shows that this is a Π1

2 statement in any Borel code for h, code
for E, and enumeration of the set a. Therefore, by the Shoenfield absoluteness,
this statement remains true in all forcing extensions as desired.

In several places, I will use the following standard tool from the theory of
definable forcing, which uses Mostowski absoluteness at every turn in its related
arguments.

Definition 2.3.7. [2, Definition 3.6.1] A poset 〈P,≤〉 is Suslin forcing if P is
an analytic subset of some Polish space X and the relations of compatibility
and incompatibility of conditions in P are both analytic in X2, and moreover
P is c.c.c.

Suslin forcings include such posets as the Cohen forcing, the random forcing,
or the Hechler forcing. The main absoluteness features of Suslin forcings are
captured in the following:

Fact 2.3.8. [9] If P is a forcing with Suslin definition, M is a transitive model
of a large fraction of ZFC containing the code for P , then the following are
equivalent:

1. P is c.c.c.;

2. M |= P is c.c.c.

Theorem 2.3.9. Suppose that P is a Suslin forcing, α is an ordinal, and M is
a transitive model containing α as well as the code for P . Let Pα be the finite
support iteration of P of length α. Then PMα ⊂ Pα, and whenever G ⊂ Pα is a
filter generic over V , then G ∩ PMα is a filter generic over M .

Proof. By transfinite induction on α prove that PMα ⊂ Pα, the order and com-
patibility relation on PMα agree with same on Pα, and every maximal antichain
of PMα in the model M is a maximal antichain in Pα. This will immediately
imply the statement of the theorem.

For the successor ordinal α = β+1, observe first that as maximal antichains
of PMβ which appear in M are maximal in Pβ by the induction hypothesis, the

PMα -names in M are in fact Pα-names. Whenever G ⊂ Pβ is a filter generic over
V , G∩PMβ is generic over M and I can form the transitive model M [G∩PMβ ], for
the sake of brevity denoted by M [G]. By the Mostowski absoluteness between
M [G] and V [G], PM [G] = PV [G] ∩M [G], and similarly for the ordering and
compatibility in PM [G]. It follows that PMα is a subset of PVα and the order and
compatibility relations of the two posets agree.

To prove the maximal antichain part of the induction hypothesis, suppose
that A ⊂ PMα is a maximal antichain in the model M and p ∈ Pα is a condition;
I must find a condition q ∈ A compatible with p. Again, let G ⊂ PVβ be a
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filter generic over V , containing the condition p, and form the models M [G]
and V [G]. Work in the model M [G]. Let B = {r ∈ P : ∃q ∈ A q � β ∈ G
and r = q(α)/G}. The set B ⊂ P must be a maximal antichain of P since A
was a maximal antichain of Pα. In the model M [G], the poset P is c.c.c. by
Fact 2.3.8 applied in V [G], so B is countable. As the compatibility in P is an
analytic relation, the maximality of B is a coanalytic formula in M [G]. By the
Mostowski absoluteness between M [G] and V [G] again, B must be a maximal
antichain of PV [G] in the model V [G]. Thus, there must be q ∈ A such that
q � β ∈ G and q(α)/G is compatible with p(α)/G in P . It follows that p, q must
be compatible in Pα as desired.

For a limit ordinal α, since Pα is the direct limit of Pβ for β ∈ α, the
same holds in M , and PMβ ⊂ Pβ by the induction hypothesis, it is clear that

PMα ⊂ Pα. Suppose that A ∈ M is a maximal antichain of PMα , and p ∈ Pα is
a condition. I must find an element of A compatible with p.

Let β is an ordinal < α such that p ∈ Pβ . In the model M , pick a maximal
antichain B ⊂ PMβ such that for every element q ∈ B, there is an element

r ∈ A such that q is smaller than the projection of r into PMβ . By the induction
hypothesis, there is an element q ∈ B compatible with the condition p. Let
r ∈ A be a condition such that q is smaller than the projection of r into PMβ .
Then r must be compatible with r as requested.

2.4 Definability of forcing

In this section I will show that various operations which are the essence of the
forcing method are Borel in a suitable sense. The resulting lemmas are perhaps
more difficult to state properly than they are to prove. Nevertheless, they are
quite useful in many complexity computations.

For the notation in this section, let X = 2ω×ω be the Polish space of all
binary relations on ω. Each element ofX is understood as a model for a language
with a single binary relational symbol. The following lemma is standard.

Lemma 2.4.1. Suppose that f : 2ω → X is a Borel function, φ is a formula
of the language with n free variables, and gi : 2ω → ω are Borel functions for
every i ∈ n. The set {x ∈ X : f(x) |= φ(g0(x), g1(x) . . . gn−1(x))} is Borel.

Proof. By induction on complexity of the formula φ. Left to the reader.

Now, if M is a countable model of ZF and P ∈M is a poset, one may want
to produce a filter G ⊂ P generic over M and construct a forcing extension
M [G]. This is a Borel procedure, as the next two lemmas show.

Lemma 2.4.2. Suppose M : 2ω → X and P : 2ω → ω are Borel functions such
that for every y ∈ 2ω, M(y) is a model of ZF and M(y) |= P (y) is a poset.
Then, there is a Borel function G : 2ω → P(ω) such that for every y ∈ 2ω, G(y)
is a filter on P (y) which is generic over M(y).

Proof. By induction on n ∈ ω define Borel functions fn : 2ω → ω so that



2.4. DEFINABILITY OF FORCING 15

• for every y ∈ 2ω, M(y) |= fn(y) is the largest element of the poset P (y);

• for every y ∈ 2ω and n ∈ ω, if M(y) |= n is an open dense subset of the
poset P (y), then fn+1(y) is the smallest number m such that M(y) |= m
is an element of n and it is smaller that fn(y) in the poset P (y); otherwise,
fn+1(y) = fn(y).

The functions defined in this way are Borel by Lemma 2.4.1. Let G : 2ω → P(ω)
be defined so that for every y ∈ ω, G(y) is the set of all m such that M(y) |= m
is an element of the poset P (y) and for some n ∈ ω, M(y) |= fn(y) is smaller
than m in the poset P (y). It is clear that the function G works.

Lemma 2.4.3. Suppose that M : 2ω → X, P : 2ω → ω, G : 2ω → P(ω) are
Borel functions such that for every y ∈ 2ω, M(y) is a model of ZF, M(y) |= P (y)
is a poset, and G(y) ⊂ P (y) is a filter generic over M(y). Then, there are
Borel functions M [G] : 2ω → X and re : 2ω × ω → ω such that for every
y ∈ 2ω, M [G](y) is a generic extension of M(y) by G(y) and for every n ∈ ω,
re(y)(n) = n/G(y) whenever M(y) |= n is a P (y)-name.

Proof. By induction on n ∈ ω build Borel functions fn : 2ω → ω such that for
every y ∈ 2ω, fn(y) is the smallest number m such that M(y) |= m is a P (y)-
name, and for every n′ < n it is not the case that the filter G(y) contains a
condition p such that M(y) |= p 
P (y) fn′(y) = fn(y). These functions are Borel
by Lemma 2.4.1. Let M [G] : 2ω → X be the Borel function defined by 〈n,m〉 ∈
M [G](y) if the filter G(y) contains a condition p such that M [y] |= p 
P (y)

fn(y) ∈ fm(y). Let re : 2ω × ω → ω be the function defined by re(y, n) = m if
there is a condition p in the filter G(y) such that M(y) |= p 
P (y) fm(x) = n.
These functions M [G], re work by basic theorems on forcing applied in the
models M [y] for y ∈ 2ω.

If M is a transitive countable model of set theory, P ∈M is a poset, τ ∈M
is a P -name for a transitive set, and a is a transitive set, one may ask whether
there is a filter G ⊂ P which is generic over M such that a = τ/G, and attempt
to produce such a filter if it exists. The following lemma shows that this is
a Borel procedure. An important nontrivial case arises in applications where
P 
 V (τ) fails the axiom of choice. The lemma apparently only works for
wellfounded models as opposed to arbitrary (perhaps illfounded) models.

Lemma 2.4.4. Suppose M : 2ω → X, P, τ : 2ω → ω and a : 2ω → X are Borel
functions such that for every y ∈ 2ω, M(y) is a wellfounded model of ZFC,
M(y) |= P (y) is a poset, τ(y) is a P (y)-name for a transitive set. Then,

1. the set B = {y ∈ Y :there is a filter G ⊂ P (y) generic over the model M(y)
such that 〈τ(y)/G,∈〉 is isomorphic to a} is Borel;

2. there is a Borel function G : B → P(ω) such that for every y ∈ B,
G(y) ⊂ P (y) is a filter generic over M(y) such that 〈τ(y)/G(y),∈〉 is
isomorphic to 〈a(y),∈〉.
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Proof. Use Lemma 2.4.1 to find Borel functions P0, σ, ν, P1, P2 : 2ω → ω so
that for every y ∈ 2ω, M(y) satisfies the following rest of this paragraph. σ(y)
is some P (y) ∗ Coll(ω, |τ(y)|)-name for an isomorph of 〈τ(y),∈〉 with domain
ω. Write Q be the poset of nonempty open subsets of the infinite permutation
group S∞, adding a Cohen-generic element π̇ ∈ S∞. Then P0(y) is the three
step iteration P (y) ∗ Coll(ω, |τ(y)|) ∗ Q̇, ν(y) is the P0(y)-name for the binary
relation σ ◦ π̇ on ω. P1(y) is the complete Boolean algebra generated by the
name ν(y), a complete subalgebra of the completion of the poset P0(y). Let
Ṗ2(y) be the P1-name for the remainder poset P0(y)/P1(y).

Let D = {〈y, π,G〉 ∈ 2ω × S∞ ×P(ω): G ⊂ P1(y) is a filter generic over the
model M(y) such that ν(y)/G = a(y) ◦ π}. This is a Borel set by Lemma 2.4.3.
The projection of D into the 2ω coordinate is the set B by definitions. Write
C ⊂ 2ω × S∞ for the projection of D into the first two coordinates.

Claim 2.4.5. 1. The P(ω)-sections of D are either empty or else singletons.

2. The S∞-sections of C are either empty or else comeager in S∞.

Proof. To simplify the notation, fix y ∈ 2ω and omit the argument y from the
expressions like M(y), σ(y) . . . .

(1) uses the wellfoundedness of the model M . Suppose that the P(ω)-section
Dy,π is nonempty. AsM |=“P1 is completely generated by the name ν”, the filter
G can be recovered by transfinite induction using infinitary Boolean expressions
in M applied to a ◦ π, and therefore it is unique.

(2) is more difficult, and it is the heart of the proof. Suppose that the S∞-
section Cy is nonempty. Thus, there is a filter G0 ⊂ P be a filter generic over
M such that 〈τ/G0,∈〉 is isomorphic to the binary relation a on ω. Let G1 ⊂
Coll(ω, τ/G0) be a filter generic overM [G0], and let z′ = σ/(G0∗G1). Thus, z, z′

are isomorphic binary relations on ω, an there is a permutation π0 ∈ S∞ such
that z = z′◦π0. Recall that Q is the poset of nonempty open subsets of S∞. Let
N be a countable elementary submodel of a large enough structure containing
M,G0, G1, g0. It will be enough to show that every element of S∞ which is
Q-generic over N belongs to the set Cy, since there are comeagerly many such
points. Let π ∈ S∞ be a point Q-generic over N . Since the meager ideal on S∞
is translation invariant, even the point π−10 π is Q-generic over N and therefore
over the smaller model M [G0][G1] as well. Let G2 ⊂ Q be the filter generic over
M [G0][G1] associated with π−10 π. Now, z ◦ π = z′ ◦ π0 ◦ π−10 ◦ π = z′ ◦ π−10 π.
Therefore, z◦π is equal to the point ν/(G0∗G1∗G2)and π ∈ Cy as required.

Now, as one-to-one projections of Borel sets are Borel [14, Theorem 15.1], the
set C is Borel by Claim 2.4.5(1). As the category quantifier yields Borel sets [14,
Theorem 16.1], the set B as the projection of C into the first coordinate is Borel.
Borel sets with nonmeager vertical sections allow Borel uniformizations [14,
Theorem 18.6], and so there is a Borel uniformization f : B → S∞ of C. As the
set D has singleton vertical sections, it is itself its uniformization g : C → P(ω).
Let G1 : B → P(ω) be the function defined by G1(y) = g(y, f(y)). Thus, for
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every y ∈ B, G1(y) ⊂ P1(y) is a filter generic over M(y) such that ν/G1(y) is
isomorphic to a(y).

The argument is now in its final stage. Let P2 : 2ω → ω be a Borel function
such that for every y ∈ 2ω, M(y) |= P2(y) is a name for the quotient poset
P0(y)/P1(y). Use Lemmas 2.4.2 and 2.4.3 to find a Borel function G2 : B →
P(ω) such that G2(y) ⊂ P2/G1(y) is a filter generic over the model M(y)[G1(y)].
Let G0 : B → P(ω) be a Borel function indicating a filter on P0(y) which is the
composition of G1 and G2. Let G : B → P(ω) be the function which indicates
the first coordinate of the filter G0(y) ⊂ P0(y). Recall that the poset P0(y)
is a three stage iteration of which the first stage is P (y), so for every y ∈ B,
G(y) ⊂ P (y) is a filter generic over the model M(y). The function G has the
required properties.

If M is a countable model of ZFC, j : M → N is an elementary embedding
which is a class in M , and L is a linear ordering, one may form the iteration of
j along the linear ordering L. This is a Borel operation as the following lemma
shows.

Lemma 2.4.6. Let M : 2ω → X and U : 2ω → ω and L : 2ω → X be Borel
functions. There is a Borel function N : 2ω → X and j : 2ω × ω → ω such
that for every y ∈ 2ω, if M(y) is a model of ZFC, M(y) |= U(y) is a normal
measure on an uncountable cardinal, and L(y) is a wellordering, then N(y) is
a model of ZFC isomorphic to the iteration of the U(y) ultrapower of the model
M(y) along L(y), and j(y) : M(y)→ N(y) is the iteration embedding.

Proof. To simplify the notation, assume that for every y ∈ 2ω, M(y) is a model
of ZFC and M(y) |= U(y) is a normal measure on an uncountable cardinal. I
have to show that the usual direct limit description of the iteration is Borel.

First, consider the construction of the usual ultrapower. Let κ(y) be the
cardinal on which U(y) is normal measure in M(y). For every m ∈ ω let Um(y)
be the m-th Fubini product of U(y); thus M(y) |= Um(y) is a κ(y)-complete
ultrafilter on κm(y). For a ⊂ ω and y ∈ 2ω, let Ea(y) be the equivalence relation
on ω defined by n Ea m if M(y) |= {x : n(x) = m(x)} ∈ U |a|(y). Let ∈a (y)
be the binary relation on ω defined by n Ea m if M(y) |= {x : n(x) ∈ m(x)} ∈
U |a|(y). Thus, Ea,∈a are Borel relations on 2ω × ω × ω and moreover, ∈a (y)
respects the equivalence Ea.

Now look at the direct limit of the ultraproducts constructed in the previous
paragraph. For a ⊂ b ⊂ ω let jab(y) : ω → ω by the function defined by
jab(y)(n) = m if M(y) |= n is a function with domain κ|a|(y) and m is a
function with domain κ|b|(y) and n = m ◦ φ where φ : |a| → |b| is the unique
map such that φ ◦ ψ0 = ψ1 ◦ i, where i : a → b is the identity map, ψ0 is the
order preserving map from a with the L(y)-order to |a| with the usual natural
number order and ψ1 is the order preserving map from b with the L(y)-order to
|b| with the usual natural number order. Thus, jab : 2ω×ω → ω is a Borel map,
jab(y) respects the equivalences Ea(y) and Eb(y), and jac(y) = jbc(y) ◦ jab(y)
whenever a ⊂ b ⊂ c. Let E(y) be an equivalence relation on ω × [ω]<ℵ0 defined



18 CHAPTER 2. PRELIMINARIES

by 〈n, a〉 E (y)〈m, b〉 if ja,a∪b(y)(n) Ea∪b jb,a∪b(y)(m). Let ∈ (y) be a relation
on ω × [ω]<ℵ0 defined by 〈n, a〉 ∈ (y)〈m, b〉 if ja,a∪b(y)(n) ∈a∪b (y)jb,a∪b(y)(m).

Now, the final considerations. It is now easy to find a Borel map π : 2ω ×
ω × [ω]<ℵ0 such that π(y) is constant on E(y)-equivalence classes and distinct
E(y)-equivalence classes are mapped to distnict numbers. Let N : 2ω → X be
the Borel map defined by (n,m) ∈ N(y) if π−1(y)(n) ∈ (y) π−1(y)(m). Let
j : 2ω × ω → ω be the Borel map defined by j(y)(n) = m if π(y)(n, 0) = m.
This works.



Chapter 3

Pinned equivalence
relations

3.1 Definitions and basic concerns

The concept of unpinned equivalence relations first appeared in the work of
Greg Hjorth. The current general definition is due to Kanovei:

Definition 3.1.1. [12, Chapter 17] Let E be an analytic equivalence relation
on a Polish space X. Let P be a poset and τ a P -name for an element of Ẋ.
The name τ is (E-)pinned if P × P 
 τleft Ė τright. The name is (E-)trivial if

P 
 τ Ė x̌ for some ground model element x ∈ X. The equivalence relation
E is pinned if all E-pinned names on all posets are E-trivial. Otherwise, E is
unpinned.

The reader should note the terminology discrepancy between this definition
and that of [12, Chapter 17]; the reason behind it is the harmonization of the
pinned concept and the trim concept introduced later in this book. The pinned
concept is invariant under Borel reducibility and even weak Borel reducibility.
This feature turns it into a potent tool for proving nonreducibility results.

Lemma 3.1.2. If E,F are analytic equivalence relations on respective Polish
spaces X,Y , E ≤wB F , and F is pinned, then E is pinned as well.

Proof. Let a ⊂ X be a countable set and h : X → Y be a Borel map which is
a Borel reduction of E to F on X \ [a]E . Let P be a poset and τ an E-pinned
name for an element of X. I must prove that τ is trivial.

If P 
 τ ∈ [a]E then certainly τ is trivial. Suppose then that P 
 τ /∈ [a]E .
By the Shoenfield absoluteness, the function h remains a reduction of E to F
outside the set [a]E even in the P ×P -extension of the ground model. It follows
that ḣ(τ) is an F -pinned name. As F is pinned, this name must be F -trivial
and so there is y ∈ Y such that P 
 ḣ(τ) F y̌. In particular, P forces that there
is x ∈ X \ [a]E such that h(x) F y. By the Shoenfield absoluteness, such an

19
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x ∈ X must exist already in the ground model. It is easy to see that P 
 τ E x̌
as desired.

I will now list several results identifying some natural pinned and unpinned
equivalence relations. The following two facts were proved soon after the intro-
duction of the pinned concept:

Fact 3.1.3. [12, Theorem 17.1.3] All Borel equivalence relations with Σ0
3 equiv-

alence classes are pinned.

Fact 3.1.4. [12, Theorem 17.1.3] All orbit equivalence relations generated by
continuous actions of Polish groups with complete left-invariant metric are pinned.

Another quite different class of equivalence relations turns out to contain only
pinned relations as well:

Definition 3.1.5. An equivalence relation E on a Polish space X is treeable if
there is an analytic acyclic graph T ⊂ X2 such that x E y if and only if x, y are
in the same connected component of T .

Theorem 3.1.6. (with John Clemens) All treeable equivalence relations are
pinned.

Proof. First, I will introduce a useful graph-theoretic notation and a fact. If S is
a tree on some vertex set V and a ⊂ V is a set, the convex closure of a in S is the
smallest set b ⊃ a which with any two of its points also contains the shortest S-
path connecting them. Reviewing all the finitely many possible configurations,
it is easy to see that any set of four distinct points in V can be divided into two
disjoint pairs whose convex closures have a nontrivial intersection.

Let E be a treeable equivalence relation on a Polish space X. Let T ⊂ X2

be an analytic acyclic graph generating E. Let P be a poset and τ an E-pinned
name; I must show that τ is E-trivial.

Consider the product P 4 of four copies of the poset P , a generic filter G ⊂
P 4, its associated mutually generic filters Gi : i ∈ 4 on the poset P , and the
points xi = τ/Gi ∈ X for i ∈ 4. As the name τ is pinned, the points xi are
pairwise E-related. As in the first paragraph, there are two disjoint pairs in
the set {xi : i ∈ 4}, say {x0, x1} and {x2, x3}, whose convex closures have
a nontrivial intersection, containing some point x ∈ X. Use the Shoenfield
absoluteness to see that the graph T is still acyclic in V [G0, G1] as well as in
V [G] and it generates E in both these models. By the Shoenfield absolutenes
again, the (finite) convex closure of {x0, x1} is a subset of the model V [G0, G1],
since it is the unique T -path between x0 and x1 which does not turn back on
itself. Similarly, the convex closure of {x2, x3} is a subset of V [G2, G3]. Thus,
x ∈ V [G0, G1] ∩ V [G2, G3], and by the product forcing theorem it follows that
x ∈ V . This implies that the name τ is E-trivial, forced to be E-related to x̌ as
required.

There are two canonical examples of analytic unpinned equivalence relations.
First, let F2 by the equivalence relation on (2ω)ω defined by x F2 y if rng(x) =
rng(y). This is a Borel equivalence relation.
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Example 3.1.7. F2 is unpinned.

Proof. Let P = Coll(ω, 2ω) and let τ be the P -name for the generic enumeration
of (2ω)V . It is clear that this is an F2-pinned name, and since the set (2ω)V is
uncountable in V , the name is not trivial.

Let Eω1
be the analytic equivalence relation on binary relations on ω con-

necting x, y if either both x, y are not wellfounded linear orders or else x and
y are isomorphic. This is a most common example of an analytic equivalence
relation with ℵ1 many equivalence classes.

Example 3.1.8. Eω1 is unpinned.

Proof. Let P = Coll(ω, ω1) and let τ be a P -name for a binary relation on ω
which is a wellorder of length ωV1 . It is not difficult to check that τ is a nontrivial
Eω1

-pinned name.

As is the case with every class of equivalence relation closed under Borel
reducibility, two questions immediately come to mind.

Question 3.1.9. Is there a ≤B-smallest unpinned Borel equivalence relation?

Kechris [12, Question 17.6.1] conjectured that F2 is this smallest unpinned
Borel equivalence relation. This turns out to be false [27] and many coun-
terexamples will be discussed below. However, in one sense the conjecture has
a positive answer: it is true in choiceless contexts such as the Solovay model
derived from a measurable cardinal–Theorem 3.4.1.

Question 3.1.10. Is there a ≤wB-largest pinned analytic equivalence relation?

In general, it appears to be quite difficult to decide whether a given equiva-
lence relation is pinned or not. The following question illustrates the extent of
my ignorance in this direction:

Question 3.1.11. Characterize the collection of those compact (analytic etc.)
sets A ⊂ (2ω)ω such that F2 � A is pinned.

3.2 Absoluteness

The definition of pinned equivalence relation quantifies over all partial order-
ings as well as names. The status of absoluteness of such a definition is a priori
unclear. In this section, I will show that the evaluation of Borel equivalence re-
lation as pinned/unpinned is suitably absolute in ZFC. For analytic equivalence
relations, a similar result holds in the presence of suitable large cardinals.

Theorem 3.2.1. Suppose that E is a Borel equivalence relation on a Polish
space X. The following are equivalent:

1. E is pinned;
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2. For every ω-model M of ZFC containing the code for E, M |= E is pinned.

Proof. For simplicity assume X = ωω. The implication (2)→(1) is trivial. If
(1) fails, then E is unpinned, and the failure of (2) is witnessed by M = V .

The implication (1)→(2) is more difficult. Suppose that (2) fails. Fix a
ω-model M of ZFC containing the code for E such that M |= E is unpinned;
taking an elementary submodel if necessary I may assume that M is count-
able. In the model M , find a nontrivial E-pinned name τ0 on some poset Q0.
Form a transfinite sequence of models and a commuting system of elementary
embeddings 〈Mα, Qα, τα, jβα : β < α ≤ ω1〉 so that

1. M0 = M , for every countable α Mα is a countable ω-model of ZFC, and
jβα(Qβ , τβ) = Qα, τα;

2. for limit α the model Mα is obtained as a direct limit of the earlier models;

3. if there is x ∈ X such that Qα 
 τα E x̌ then there is such an x in the
model Mα+1.

After the induction is performed, I will show that τω1 is a nontrivial E-pinned
name on Qω1 , and therefore E is indeed unpinned and (1) fails.

The successor step of the induction is arranged through the following theo-
rem of ZFC applied in the model Mα:

Claim 3.2.2. Whenever P is a poset, then in some generic extension there
is an elementary embedding j : V → W into a possibly illfounded ω-model W
such that W contains j′′P as well as some subset of j′′P whose j-preimage is a
P -generic filter over V .

Proof. Consider the set Y = [P ∪ P(P )]ℵ0 and functions f, g with domain Y
such that f(a) = a ∩ P and g(a) is some filter on a ∩ P which meets all open
dense subsets of a∩P in the set a. Let I be the σ-ideal of nonstationary subsets
of the set Y and consider the poset R = P(Y ) modulo I and the associated
generic ultrapower j : V →W . It is easy to see that the functions f, g represent
the desired elements in the generic ultrapower: [f ] = j′′P and [g] is a filter on
j′′P meeting j(D) for every open dense subset D ⊂ P in the ground model.

Now working in Mα, find a poset R forcing the existence of the elementary
embedding as above for P = Qα. Let R′ be the disjoint union of R and Qα
with the ordering defined by r ≤ q if r 
 j(q) ∈ ġ. Then Qα is a regular
subposet of R′ and R is a dense subset of R′. Now suppose that Qα 
 τα E x̌;
perhaps the point x is not in the model Mα. Let N be a countable elementary
submodel of a large enough structure and let h ⊂ R′ be generic over N . Then
h ⊂ R′ is also generic over Mα. Let j = jαα+1 : Mα → Mα+1 be the generic
embedding obtained by an application of the claim in Mα. Let g = h ∩ Qα.
Then τ/g E x by the forcing theorem applied in the model N and the Mostowski
absoluteness between N [h] and V . Also, τ/g ∈ Mα+1 since j′′g ∈ Mα+1 and
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τ/g is reconstructed as the unique point y ∈ ωω such that for every n ∈ ω,
y(n) = m if there is p ∈ j′′g which forces in the poset jQα that j(τ)(n) = m.

Once the induction is performed, consider the poset Q = Qω1
as well as the

name τ = τω1
from the point of view of V as opposed to the model Mω1

.

Claim 3.2.3. τ is an E-pinned name for an element of X.

Proof. Since Mω1
is an ω-model, τ is indeed a name for an element of X. To see

that it is pinned, let G×H ⊂ Q×Q be a filter generic over V . Then G×H is
also generic over Mω1 and by the forcing theorem applied in Mω1 , Mω1 [G×H] |=
τ/G E τ/H. Thus, the model Mω1 [G×H] contains a branch through the tree T
witnessing τ/G E τ/H, which also witnesses that V [G×H] |= τ/G E τ/H.

Claim 3.2.4. τ is a nontrivial E-pinned name.

Proof. Suppose that there is a point x ∈ X such that Q 
 τ E x̌. Let N be
a countable elementary submodel of a large enough structure containing the
iteration and the point x and write α = ω1∩N . Since the model Mω1 is a direct
limit of the tower of earlier models, the transitive collapse π of N ∩Mω1 is an
isomorphism of Qα, τα with Q∩N, τ ∩N . Whenever g ⊂ Q∩N is a filter generic
over V , it must be the case that N [g] |= x E τ/g by the forcing theorem applied
in N , and V [g] |= x E τα/π

′′g = τ/g by the Mostowski absoluteness between
V [g] and N [g]. Thus, Qα 
 τα E x̌, and by the inductive assumption there
is a point y ∈ X ∩Mα+1 which is E-related to x. Then, Q 
 τ E y̌. By the
Borel absoluteness between the Q-extension of V and Mω1

, it must be the case
that Mω1

|= Q 
 τ E y̌. This contradicts the fact that M0 |= τ0 is a nontrivial
E-pinned name together with the elementarity of the embedding j0ω1

.

Corollary 3.2.5. Let E be a Borel equivalence relation on a Polish space X.
The collection I = {A ⊂ X: A is analytic and E � A is pinned} is a Π1

1 on Σ1
1

σ-ideal of analytic sets.

Proof. It is not difficult to see that I is indeed a σ-ideal. To verify the definabil-
ity condition, let A ⊂ X be an analytic set. The statement “E � A is unpinned”
is equivalent to the existence of an ω-model containing the code for A as well
as E which satisfies the statement “E � A is unpinned” by Theorem 3.2.1, and
this is an analytic statement.

Corollary 3.2.6. Let E be a Borel equivalence relation on a Polish space X.
The statement “E is pinned” is absolute between all generic extensions.

Proof. The validity of item (2) of Theorem 3.2.1 does not change if one only con-
siders countable models. This follows from an immediate downward Löwenheim-
Skolem argument. The countable model version of (2) is a coanalytic statement,
and as such it is absolute among all forcing extensions by the Mostowski abso-
luteness.
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The absoluteness of the pinned status of an analytic equivalence relation is
a considerably more difficult question. It does not hold in ZFC alone as the
following rather primitive constructible example shows.

Example 3.2.7. In the constructible universe, there is an analytic equivalence
relation E which is pinned, while in some generic extension it becomes unpinned.

Proof. The domain of E consists of structures with universe ω and language
including one binary relation ∈ and one ternary relation symbol R. The equiv-
alence relation is defined by the following formula: x E y if either x, y both fail
to be wellfounded models of the Lω1ω sentence φ∧ψ where φ says “V = Lα and
P(ω) exists” and ψ says “for every infinite ordinal β, R(β, ·, ·) orders the ordi-
nals smaller than β in ordertype ω”, or x is isomorphic to y. It is not difficult
to see that E is indeed an analytic equivalence relation.

Now in L, there are no uncountable wellfounded models of φ ∧ ψ, since ψ
implies that such model would have to be Lω1

, and Lω1
|= P(ω) does not exist.

This means that in L, E is pinned. On the other hand, in the Coll(ω, ω1)-
extension of L, the relation E becomes unpinned, as φ ∧ ψ has an uncountable
wellfounded model (LωL2 with an appropriate relation R) and the Coll(ω, ωL2 )-
name for an isomorph of this model with universe ω is a nontrivial E-pinned
name.

Still, in the presence of sufficiently large cardinals the pinned status of every
analytic equivalence relation is absolute:

Theorem 3.2.8. Assume that there is a measurable cardinal larger than a
Woodin cardinal. Let E be an analytic equivalence relation on a Polish space
X. The following are equivalent:

1. E is pinned;

2. for every wellfounded, linearly iterable model M of ZFC+there is a mea-
surable cardinal larger than a Woodin cardinal containing the code for E,
M |= E is pinned.

Proof. The argument is entirely parallel to the proof of Theorem 3.2.1 and I will
only indicate the minor changes. In the proof of (1)→(2), From a failure of (2)
extract a countable wellfounded linearly iterable model M0 |= E is not pinned,
and build the iteration so that the encountered models Mα are wellfounded.
This is possible by using the stationary tower forcing associated with the Woodin
cardinal at successor stages of the construction [16, Theorem 2.7.7]. In the end,
the model Mω1

is wellfounded as well, and by the Mostowski absoluteness it and
its generic extensions are correct about the analytic equivalence relation E. This
is all that is necessary to push the essentially identical argument through.

Corollary 3.2.9. Suppose that there are class many Woodin cardinals. Let E
be an analytic equivalence relation on a Polish space X. Then E is pinned if
and only if every poset forces E to be pinned.
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Proof. The truth value of the statement (2) in Theorem 3.2.8 does not change if
one considers countable models only. This follows from a downward Löwenheim-
Skolem argument. The countable version of (2) is Σ1

3 and so the corollary follows
from Σ1

3-absoluteness between the ground model any any forcing extension un-
der the given large cardinal assumption.

3.3 Restrictions on forcings

It is now natural to ask which forcings can carry nontrivial pinned names. This is
in fact a complicated issue. The following theorem records most of the general
facts known to me at this point in this direction. I will need the following
standard definition:

Definition 3.3.1. (Foreman, Magidor [5]) A poset P is reasonable if for every
ordinal λ and for every function f : λ<ω → λ in the P -extension there is a set
a ⊂ λ which is closed under f , belongs to the ground model, and it is countable
in the ground model.

In particular, all c.c.c. and all proper forcings are reasonable. Good examples of
unreasonable forcings are posets which collapse ℵ1, Namba forcing and Prikry
forcing.

Theorem 3.3.2. Let E be an analytic equivalence relation on a Polish space
X.

1. If E is unpinned then there is a nontrivial E-pinned name on every poset
collapsing ℵ1 to ℵ0;

2. if V = L then there are no nontrivial E-pinned names on ℵ1-preserving
posets;

3. there are no nontrivial E-pinned names on reasonable posets;

4. if E is an orbit equivalence relation then there are no nontrivial E-pinned
names on ℵ1-preserving posets.

Proof. For (1), let τ be a nontrivial E-pinned name on some poset P . Let
〈Mα : α ∈ ω1〉 be a continuous ∈-tower of countable elementary submodels of a
large structure containing X and E. Let Mω1

=
⋃
αMα, let Q = P ∩Mω1

and
let σ = τ ∩Mω1 .

Claim 3.3.3. σ is a nontrivial E-pinned name on the poset Q.

Proof. I will just show that σ is nontrivial. Suppose for contradiction that there
is a point x ∈ X such that Q 
 σ E x̌. I will show that there then must be
y ∈ Mω1

∩ X which is E-related to x. Then Q 
 σ E y̌, by the Mostowski
absoluteness between the Q-extensions of Mω1

and V Mω1
|= P 
 τ E y̌, and

this contradicts the elementarity of the model Mω1
and the nontriviality of the

name τ .
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To find the point y ∈Mω1∩X, letN be a countable elementary submodel of a
large structure containing 〈Mα : α ∈ ω1〉, Q, x. Since the tower of models 〈Mα :
α ∈ ω1〉 is continuous, there is a limit ordinal α ∈ ω1 such that Mα = N ∩Mω1

.
Let Qα = Q ∩Mα = P ∩Mα and σα = σ ∩Mα = τ ∩Mα. By elementarity
of the model N and analytic absoluteness between the Qα-extension of N and
V , Qα 
 σα E x̌. Since Qα = P ∩Mα and σα = τ ∩Mα, both Qα, τα belong
to the model Mα+1. By the elementarity of the model Mα+1, there must be a
point y ∈ X ∩Mα+1 such that Qα 
 σα E y̌ (since the point x is such). By the
transitivity of E, it follows that x E y. The point y ∈Mα+1 ⊂Mω1

works.

Now, suppose that R is a poset collapsing ℵ1. Since |Mω1 | = ℵ1, in the
R-extension there is a filter Q-generic over Mω1

. Let Ḣ be an R-name for such
a filter and let ν be the R-name for σ/Ḣ. I claim that ν is a nontrivial E-
pinned R-name. For this, suppose that Kleft × Kright ⊂ R × R is a generic
filter, consider the associated filters Hleft, Hright ⊂ Q generic over Mω1 , and
write xleft = σ/Hleft, xright = σ/Hright. I must show that xleft and xright ∈ X
are E-related, and at the same time not E-related to any element of the ground
model.

To this end, let F ⊂ Q be a filter generic over V [Kleft × Kright] and let
y = σ/F . By the forcing theorem in the ground model and the claim, y is
not E-related to any element of the ground model. By the forcing theorem in
the model Mω1

, Mω1
[Hleft, F ] |= xleft E y and Mω1

[Hright, F ] |= xright E y. By
the transitivity of E and the Mostowski absoluteness between these wellfounded
models and V [Kleft × Kright], it follows that V [Kleft × Kright] |= xleft E xright
and these two points are not related to any element of the ground model. This
completes the proof of (1).

For (2), assume that V = L and let P be an ℵ1-preserving poset and τ an
E-pinned name on P . Let G ⊂ P be a filter generic over V and work in V [G].
I must find a point x1 ∈ X ∩ V which is E-related to x0 = τ/G.

Let M be a countable elementary submodel of a large structure containing
P, τ . Let N be the transitive isomorph of M ∩ V . Let π : M ∩ V → N be
the transitive collapse map. Note that N = Lα for some countable ordinal α,
in particular N ∈ V and it is countable there. So, there is a filter H1 ⊂ π(P )
generic over N which belongs to V , and the point x1 = π(τ)/H ∈ X also belongs
to V . I will show that x1 E x0.

By the elementarity of the model M , the filter H0 = π′′G ⊂ π(P ) is generic
overN and x0 = π(τ)/H0. LetH2 ⊂ π(P ) be a filter generic over both countable
models N [H0] and N [H1] and let x2 = π(τ)/H2. Now, by the elementarity of
the model M and the transitive collapse π, N |= π(τ) is an E-pinned name
on π(P ) and so N [H0, H2] |= x0 E x2 and N [H1, H2] |= x1 E x2. Mostowski
absoluteness together with the transitivity of the relation E shows that x0 E x1
holds as required.

For (3), suppose that P is a reasonable poset and τ is an E-pinned name on
P . I will produce a condition p ∈ P and a point x ∈ X such that p 
 τ E x̌.
Towards this end, choose a large structure and use the reasonability of P to find
a countable elementary submodel M of it containing P,E and τ and a condition
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p ∈ P such that p 
 Ġ∩M̌ is generic over M̌ , where Ġ is the canonical P -name
for its generic ultrafilter. As M is countable, there is a filter H ⊂ P ∩M generic
over M in the ground model V . Let x = τ/H ∈ X; I claim that p 
 x̌ E τ .

Let G ⊂ P is a filter generic over V containing the condition p and write
y = τ/G. Note that G ∩M ⊂ P is a filter generic over M . Let K ⊂ P ∩M
be a filter generic over V [G]; so it is also generic over the smaller models M [H]
and M [G ∩M ]. Write z = τ/K. By the product forcing theorem applied in
M , the filters H ×K and (G ∩M)×K ⊂ P × P are both generic over M . By
the forcing theorem in M , M [G,K] |= y E z and M [H,K] |= x E z. By the
transitivity of the relation E and Mostowski absoluteness, V [G] |= x E y. This
completes the proof of (3).

The proof of (4) is apparently much harder and it is conducted in Corol-
lary 5.2.8.

Theorem 5.3.3 provides a consistent example of a (simple) Borel equivalence
relation E such that there is a nontrivial E-pinned name on Namba forcing.
The following remains open though.

Question 3.3.4. Can there be an analytic equivalence relation E and a poset
P such that every countable set of ordinals in the P -extension is covered by a
countable set of ordinals in the ground model, and there is a nontrivial E-pinned
name on P?

3.4 Unpinned relations without choice

The features of the class of unpinned equivalence relations heavily depend on the
underlying set theory; this is one of the points of the present book. In this sec-
tion, I will show that in the absence of the axiom of choice the class of unpinned
equivalence relations may greatly simplify and admit a natural two-element ba-
sis. The proof uses the tools developed in Chapter 4 in an indispensable way.

Recall the construction of the choiceless Solovay model. If κ is an inaccessible
cardinal and G ⊂ Coll(ω,< κ) is a generic filter over V , then the Solovay model
derived from κ is the model V (2ω ∩ V [G]).

Theorem 3.4.1. The following holds in the Solovay model derived from a mea-
surable cardinal. Let E be an analytic equivalence relation on a Polish space X.
The following are equivalent:

1. E is unpinned;

2. F2 ≤B E or Eω1 ≤wB E.

Corollary 3.4.2. The following holds in the Solovay model derived from a
measurable cardinal. Let E be a Borel equivalence relation on a Polish space X.
E is unpinned if and only if F2 ≤B E.
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Proof. This follows from Theorem 3.4.1 once I show that the option Eω1 ≤wB E
is not available for any Borel equivalence relation E. This in turn follows easily
from results on the pinned cardinal κ(E) obtained in Chapter 4: κ(E) <∞ by
Theorem 4.1.4(1), κ(Eω1

) = ∞ by Example 4.1.8, and the pinned cardinal is
monotone with respect to the reducibility ordering ≤wB–Theorem 4.1.3.

Proof of Theorem 3.4.1. Let κ be a measurable cardinal and let W be the Solo-
vay model derived from κ. In the modelW , (2) certainly implies (1) as the proofs
that F2, Eω1

are unpinned work in ZF, and the proof that pinned equivalence
relations persist downwards in the orderings ≤B and ≤wB works in ZF+DC.

For the implication (1)→ (2), assume that W |= E is unpinned. There must
be a poset P and an E-pinned E-nontrivial name τ on the poset P , both in W .
Both P and τ must be definable from a ground model parameter and a real in
W by the respective formulas φP and φτ . For simplicity assume that both these
reals as well as the real defining the relation E belong to the ground model.
Let Q be the two-step iteration Coll(ω,< κ) ∗ Ṗ , and write σ for the Q-name
obtained from the Ṗ -name τ . There are two cases.

Case 1. There is a condition q ∈ Q such that the Q � q-name σ is E-pinned.
In this case, I will conclude that Eω1

≤wB E and use the Shoenfield absoluteness
to transfer the weak reducibility the Solovay model. The most conceptual proof
of the reducibility uses the tools of Chapter 4, namely the equivalence Ē and
the cardinal κ(E). To simplify the notation assume that q is the largest element
of the poset Q.

First, observe that the name σ cannot be Ē-equivalent to any name on a
poset of size < κ. Suppose for contradiction that R is a poset of size < κ
and χ an E-pinned R-name such that 〈R,χ〉 Ē 〈Q, σ〉. Let G×H ⊂ Q×R be
mutually generic filters over the ground model, and decompose G into the filters
G0 ∗ G1 corresponding to the iteration Q = Coll(ω,< κ) ∗ Ṗ . Since |R| < κ,
there must be a filter K ⊂ R in V [G0] generic over the ground model. By
Lemma 2.2.7, the filters H,K ⊂ R are mutually generic over the ground model.
Thus, χ/H E χ/K as χ is a pinned name. Also, χ/H E σ/G = τ/G1 as
〈R,χ〉 E 〈Q, σ〉. The transitivity of E then implies that τ/G1 E χ/K, which
contradicts the assumption that Coll(ω,< κ) 
 Ṗ 
 τ is not E-related to any
point in the Coll(ω,< κ)-extension.

Now, it follows that κ(E) ≥ κ. By Theorem 4.1.4(2), since κ is a measurable
cardinal, κ(E) =∞. By Theorem 4.2.1, Eω1 ≤wB E as desired.

Case 2. For every condition q ∈ Q, the Q � q-name σ is not E-pinned.
In this case, I will conclude that F2 ≤B E. Then, a Shoenfield absoluteness
argument shows that the Borel reduction of F2 to E remains a Borel reduction
also in the Solovay model.

Fix a countable elementary submodel M of a large structure containing the
code for E, the posets P,Q and the name τ . I will start with an auxiliary
lemma. A collection 〈gi : i ∈ I〉 of filters on Coll(ω,< κ) is called mutually
generic over M if for every finite set a ⊂ I the filter

∏
i∈a gi ⊂ Coll(ω,< κ)|a|

is generic over M . For every set a ⊂ I write 2ωa =
⋃
{2ω ∩M [

∏
i∈b gi] : b ⊂ a

finite}, Ma = V (2ωa ), Pa and τa for the poset and name in Ma defined in the
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model M(2ωa ) by the formulas φP and φτ . Similar usage will prevail for functions
y : ω → I, writing Py = Prng(y) etc.

Lemma 3.4.3. Suppose that {gi : i ∈ I} is a mutually generic collection of
filters on Coll(ω,< κ).

1. whenever a ⊂ I is a nonempty set then in there is a filter h Coll(ω,< κ)-
generic over M such that 2ω ∩ V [h] = 2ωa ;

2. whenever a, b, c ⊂ I are pairwise disjoint countable nonempty sets then
there is a filter ha × hb × hc ⊂ Coll(ω,< κ)3 generic over M such that
2ωa = 2ω ∩ V [ha] and similarly for 2ωb and 2ωc ;

3. whenever a, b are distinct countable subsets of I then Pa ×Pb 
 ¬τa E τb.

Proof. For (1), let R = {k : ∃α ∈ κ ∃b ⊂ a finite k ⊂ Coll(ω,< α) is a filter
generic over M and k ∈ V [gi : i ∈ b]} and order R by inclusion. Let K ⊂ R
be a sufficiently generic filter; I claim that h =

⋃
K works as desired. Indeed,

a simple density argument shows that h ⊂ Coll(ω,< κ) is an ultrafilter all of
whose proper initial segments are generic over M . By the κ-c.c. of Coll(ω,< κ),
the filter h is in fact generic over V itself. A straightforward genericity argument
then shows that 2ωa = 2ω ∩ V [h] as desired.

(2) follows easily from (1). Let ha, hb, hc ⊂ Coll(ω,< κ) be any filters
obtained from (1); I will show that these filters are in fact mutually generic over
the model V . Since Coll(ω,< κ)3 has κ-c.c.c., it is enough to show that for every
ordinal α ∈ κ, the filters hαa = ha ∩ Coll(ω,< α), hαb = hb ∩ Coll(ω,< α), and
hαc = hc∩Coll(ω,< α) are mutually generic over V . Since the filters hαa , hαb and
hαc are coded by reals in the models M [ha], M [hb], and M [hc],there are finite
sets a′, b′, c′ of a, b, c respectively such that hαa ∈ M [

∏
i∈a′ gi] etc. The mutual

genericity now follows from the general Lemma 2.2.7 about product forcing.
(3) is proved in several parallel cases depending on the mutual position of

the sets a, b vis-a-vis inclusion. I will treat the case in which all three sets
a ∩ b, a \ b, b \ a are nonempty. Suppose for contradiction that Pa × Pb 

τa E τb. From (2), it follows that in V , the triple product Coll(ω,< κ)3 forces
Ṗ{0,1} × Ṗ{1,2} 
 τ{0,1} E τ{1,2}. Then, the quadruple product Coll(ω,< κ)4

forces in V that Ṗ{0,1} × Ṗ{1,2} × Ṗ{2,3} 
 τ{0,1} E τ{1,2} E τ{2,3}, in particular

Ṗ{0,1}×Ṗ{2,3} 
 τ{0,1}×τ{2,3}. In view of (2) again, this means that the product

Coll(ω,< κ)× Coll(ω,< κ) forces Ṗleft × Ṗright 
 τleft E τright. In other words,

(Coll(ω,< κ) ∗ Ṗ ) × (Coll(ω,< κ) ∗ Ṗ ) forces σleft E σright, contradicting the
case assumption.

Use Lemma 2.2.8 to find a continuous map f : 2ω → P(Coll(ω,< κ) ∩M)
such that its range consists of mutually generic filters over M . Write Y =
(2ω)ω = dom(F2). It is easy to find a Borel map g : Y → (2ω)ω such that for
every y ∈ Y , g(y) enumerates the set 2ωy . Use Lemmas 3.4.3(1) and 2.4.4 to
find a Borel map h : Y → P(Q ∩M) such that for every y ∈ Y , h(y) ⊂ Q is a
filter generic over M and rng(g(y)) = 2ω ∩V [h0(y)], where h0(y) ⊂ Coll(ω,< κ)
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is the filter generic over M obtained from h(y). Let k : Y → X be given by
k(y) = τ/h(y); this is a Borel map by Lemma 2.4.3. I will show that k is a
reduction of F2 to E.

First, assume that y0, y1 ∈ Y are F2-related. Then rng(y0) = rng(y1),
rng(g(y0)) = rng(g(y1)), and so My0 = My1 , Py0 = Py1 and τy0 = τy1 . Let H ⊂
Py0 be a filter generic over both countable models My0 [k(y0)] and My1 [k(y1)]
and let x = τy0/H. By the forcing theorem applied in the model My0 = My1 and
the fact that τy0 is an E-pinned name, conclude that x E k(y0) and x E k(y1)
and so k(x0) E k(x1) as desired.

Second, assume that y0, y1 ∈ Y are not F2-related. Choose a sufficiently
generic filter H0×H1 ⊂ Py0 ×Py1 so that H0 is generic over My0 [k(y0)] and H1

is generic over My1 [k(y1)]. As the names τy0 and τy1 are E-pinned, the forcing
theorem in the models My0 and My1 implies that k(y0) E τy0/H0 and k(y1) E
τy1/H1. Now, τy0/H0 E τy1/H1 fails by Lemma 3.4.3(3), and so k(y0) E k(y1)
must fail as well. This completes the proof.



Chapter 4

The pinned cardinal

4.1 Definitions and basic concerns

There is a cardinal number intrinsically connected with every (unpinned) equiv-
alence relation on a Polish space. Its definition begins with an extension of the
equivalence relation to the space of all pinned names.

Definition 4.1.1. Let E be an analytic equivalence relation on a Polish space
X, and let τ, σ be E-pinned names on respective posets P,Q. Say that 〈P, τ〉 Ē
〈Q, σ〉 holds if P×Q 
 τ E σ. In case when the orderings are clear from context,
write also τ Ē σ.

It is not difficult to verify that Ē is an equivalence relation. If 〈P, τ〉 Ē 〈Q, σ〉
and 〈Q, σ〉 Ē 〈R,χ〉 then the product P × Q × R forces τ E σ E χ and so by
the transitivity of E it forces τ E χ. By the Mostowski absoluteness between
the P ×Q×R extension and P ×R extension, P ×R 
 τ E χ and so τ Ē χ as
desired.

It turns out that it is interesting to count the number of Ē-equivalence
classes, or investigate other invariants of Ē-equivalence classes. Already the
simplest approach carries a lot of information:

Definition 4.1.2. Let E be an analytic equivalence relation on a Polish space
X. The pinned cardinal of E, κ(E) is the smallest cardinal κ such that every
E-pinned name is Ē-equivalent to a name on a poset of size < κ if such κ exists;
otherwise κ(E) =∞. If E is pinned then write κ(E) = ℵ1.

The last sentence of the definition is justified by the fact that there are no
nontrivial pinned names on countable posets. A countable poset is certainly
c.c.c., therefore reasonable, and Theorem 3.3.2(3) then excludes all nontrivial
pinned names on it. Thus, an equivalence relation is unpinned if and only if
κ(E) ≥ ℵ2.

The pinned cardinal of an equivalence relation can attain interesting values,
from cardinals of the form ℵα for α a countable ordinal, to inaccessible and
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Mahlo cardinals. It is also a potent tool for proving irreducibility results, as
outlined in the following basic result.

Theorem 4.1.3. Suppose that E,F are analytic equivalence relations on re-
spective Polish spaces X,Y . If E ≤wB F then κ(E) ≤ κ(F ).

Proof. Let a ⊂ X be a countable set and h : X → Y be a Borel function which
is a reduction of E to F on the set X \ [a]E . By the Shoenfield absoluteness,
h maintains this property in every forcing extension. Let P be a poset and τ
an E-pinned P -name; I must produce a poset Q of size < κ(F ) and a Q-name
τ ′ Ē-related to τ . Either P 
 τ ∈ [a]E . In this case, the name τ is E-trivial
and there is nothing to prove. Or, P 
 τ /∈ [a]E . Then, consider the P -name
σ = ḣ(τ) for an element of the space Y . As h is a weak Borel reduction in
the P × P -extension, σ is an F -pinned name. Find a poset Q of size < κ(F )
and a Q-name σ′ which is F̄ -related to σ. Since P × Q 
 ∃x ∈ X ḣ(x) F σ′

(consider x = τ), the Shoenfield absoluteness between the P ×Q-extension and
Q-extension implies that Q 
 ∃x ∈ X \ [a]E ḣ(x) F σ′. Let τ ′ be a Q-name for
such x and observe that 〈Q, τ ′〉 Ē 〈P, τ〉 as desired.

An important feature of the pinned cardinal is that there are a priori bounds
on its size:

Theorem 4.1.4. Let E be an analytic equivalence relation on a Polish space
X.

1. if E is Borel of rank Π0
α, then κ(E) ≤ (iα)+;

2. if E is arbitrary analytic and κ(E) <∞ then κ(E) is not greater than the
first measurable cardinal.

Proof. For (1), suppose that E is Borel of rank α ∈ ω1 and let τ be a pinned
P -name; I must produce a Coll(ω,iα)-name σ which is Ē-related to τ . Note
that [τ ]E is a P -name for a Borel set of rank ≤ α. As is the case for every name
for a Borel set, [24, Corollary 2.9] shows that in the Coll(ω,iα) extension V [G]
there is a Borel code for a Borel set B ⊂ X such that in every further forcing
extension V [G][H] and every x ∈ X ∩ V [G][H] in that extension, x ∈ B if and
only if V [x] |= P 
 x̌ ∈ [τ ]E . Note that if H ⊂ P is generic over V [G], then the
set B is nonempty in V [G][H], containing the point τ/H; this follows from the
fact that τ is E-pinned. Thus, the set B is nonempty already in V [G] by the
Mostowski absoluteness between V [G] and V [G][H]. Back in V , let σ be any
Coll(ω,iα)-name for an element of the set B. This clearly works.

For (2), let κ be a measurable cardinal and suppose that there is a poset P
and an E-pinned name τ on P which is not Ē-related to any name on a poset
of size < κ. It will be enough to show that κ(E) =∞ in this case.

First note that the poset P and the name τ can be selected so that |P | = κ.
Simply take an elementary submodel M of size κ of large structure with Vκ ⊂M
and consider Q = P ∩M and σ = τ ∩M . Since |Q| = κ, it will be enough
to show that σ is an E-pinned name which is not Ē-related to any name on a
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poset of size < κ. To see that σ is pinned, let G × H ⊂ Q × Q be a generic
filter over V . Then, it is also a generic filter over M , by the elementarity of M
and the forcing theorem in M M [G,H] |= σ/G E σ/H, and by the Mostowski
absoluteness between M [G,H] and V [G,H], also V [G,H] |= σ/G E σ/H. This
proves that σ is pinned. Now suppose that R is a poset of size < κ and ν is an E-
pinned name on R; without loss R, ν ∈ Vκ. Let G×H ⊂ Q×R be a generic filter
over V . Then, as R is both an element and a subset of the model M , the filter
is generic over M as well, and by the elementarity of M and the assumption
that τ is not Ē-related to ν, M [G,H] |= ¬σ/G E ν/H. By the Mostowski
absoluteness between M [G,H] and V [G,H], V [G,H] |= ¬σ/G E ν/H. This
proves that σ is not Ē-related to any name on a poset of size < κ as desired.

Thus, assume that the poset P has size κ. Let j : V → N be any elementary
embedding into a transitive model with critical point equal to κ. Note that
H(κ) ⊂ N and so both P, τ are (isomorphic to) elements of N . Let 〈Nα, jβα :
β ∈ α〉 be the usual system of iteration of the elementary embedding j along
the ordinal axis. Let Pα = j0α(P ) and τα = j0,α(τ). It will be enough to show
that no set meets all Ē-classes, and for that it is enough to show that the pairs
〈Pα, τα〉 for α ∈ Ord are pairwise Ē-unrelated.

Suppose that β ∈ α are ordinals and G × H ⊂ Pβ × Pα is a generic filter
over V . As initially |P | = κ, the poset Pβ and the name τβ are (isomorphic to)
elements of the model Nα, the poset Pα is an element of Mα by the definitions,
and so the filter G×H ⊂ Pβ×Pα is also generic over Nα. By the elementarity of
the embedding j0α, Nα |= 〈Pα, τα〉 is not Ē-related to any name on a poset of size
< |j0α(κ)|, in particular it is not Ē-related to 〈Pβ , τβ〉. It follows by the forcing
theorem applied in Nα that Nα[G,H] |= ¬τβ/G τα /H. By the Mostowski
absoluteness between Nα[G,H] and V [G,H], V [G,H] |= ¬τβ/G τα /H, and so
〈Pα, τα〉 is not Ē-related to 〈Pβ , τβ〉 as desired.

The bound presented in the first item is nearly optimal, as shown by Corol-
lary 4.4.7. One interesting corollary is that κ(E) < ∞ for every Borel equiva-
lence relation E. Note that the definition of κ(E) does not depend on the Polish
topology chosen for the space X, and so we conclude that if the value of the
cardinal κ(E) is too large, then there is no topology on X inducing the same
Borel structure that makes E into a Π0

α subset of X × X. This connects the
pinned cardinal with the subject of potential Borel classes studied by Lecomte
[18].

Finally, the stage is ready for the first elementary computations of the car-
dinal κ(E). Much more substantial examples will be presented in Section 4.4.

Example 4.1.5. κ(F2) = c+.

Proof. For the inequality κ(F2) ≥ c+, consider the poset P = Coll(ω, 2ω) and
the name τ for the generic enumeration of (2ω)V . It is clear that τ is an F2-
pinned name. Moreover, if 〈Q, σ〉 are a poset and a name Ē-related to 〈P, σ〉,
it follows that Q 
 (2ω)V is countable and therefore |Q| ≥ c.

For the other inequality and later reference, I will prove a useful claim.
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Claim 4.1.6. Let P be a poset and τ a P -name for an element of dom(F2). τ
is F2-pinned if and only if there is a set A ⊂ 2ω such that P 
 rng(τ) = Ǎ.

Proof. The right-to-left direction is immediate as P×P 
 rng(τleft) = rng(τrr) =
Ǎ. For the left-to-right direction, to find the set A, first note that P 
 rng(τ) ⊂
V . If this failed then there would be some condition p ∈ P and a P -name
ν p 
 ν ∈ rng(τ) \ V . If G × H ⊂ P × P is a generic filter over V such
that p ∈ G, then ν/G ∈ V [G] \ V [H] by the product forcing theorem, and
so certainly rng(τ/G) 6= rng(τ/H), contradicting the assumption that τ was a
pinned name. Note also that for every point x ∈ 2ω, either P 
 x̌ ∈ rng(τ) or
P 
 x̌ /∈ rng(τ). If this failed, then there would be a point x ∈ 2ω as well as
conditions p, q ∈ P such that p 
 x̌ ∈ rng(τ) and q 
 x̌ /∈ rng(τ). In such a
case, 〈p, q〉 
 rng(τleft) 6= rng(τright) since the two sets differ in the membership
of x. This again contradicts the assumption that τ is an F2-pinned name. All
summed up, the set A = {x ∈ 2ω : P 
 x̌ ∈ rng(τ)} works as desired.

Now suppose that P is a poset and τ is an F2-pinned P -name. Let A ⊂ 2ω

be the set as in Claim 4.1.6. Certainly 〈P, τ〉 Ē 〈Q, σ〉 where Q = Coll(ω,A)
and σ is the Q-name for the generic enumeration of the set A. Since |A| ≤ c, I
conclude |Q| ≤ c and also κ(F2) ≤ c+.

Example 4.1.7. Let E be the equivalence relation on the space X of all binary
relations on ω connecting x, y if either both x, y are not wellfounded models of
ZFC+there is no inaccessible cardinal or x is isomorphic to y. Then κ(E) is the
successor of the first weakly inaccessible cardinal.

Proof. Let κ be the first weakly inaccessible cardinal. To show that κ(E) ≥ κ+,
consider the structure M = 〈Lκ,∈〉, the poset P = Coll(ω, κ) and the P -name
τ for any binary relation on ω isomorphic to M . Clearly, τ is an E-pinned
name. Moreover, if 〈Q, σ〉 are a poset and a name Ē-related to 〈P, τ〉 then
Q 
 |M | = κ = ℵ0 and therefore |Q| ≥ κ.

For the inequality κ(E) ≤ κ+, suppose that P is a poset and τ is an E-pinned
name on P . If τ is not forced to be a wellfounded model of extensionality, then
τ is forced to belong to the single nonwellfounded E-class which is already rep-
resented in the ground model, and therefore τ is trivial. Suppose that P 
 τ
is wellfounded and extensional. I will prove that there is a (possibly uncount-
able) transitive set M in the ground model such that P 
 τ is isomorphic to
〈M,∈〉. Since M must be a model of ZFC+no inaccessible, it cannot contain
the ordinal κ (which would be inaccessible in M) and therefore |M | ≤ κ. Thus,
〈P, τ〉Ē〈Q, σ〉 where Q = Coll(ω,M) and σ is a Q-name for some binary relation
on ω isomorphic to M . This will conclude the proof of κ(E) ≤ κ+.

To find the set M , use the Mostowski collapse theorem to find a P -name
Ṅ for the unique transitive isomorph of τ . First argue that P 
 Ṅ ⊂ V .
Otherwise, by a ∈-minimalization argument, there would be a condition p ∈ P
and a P -name ν such that p 
 ν ∈ Ṅ and ν ⊂ V . If G × H ⊂ P × P is a
generic filter over V such that p ∈ G, then ν/G ∈ V [G] \ V [H] by the product
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forcing theorem, and therefore τ/G is not isomorphic to τ/H since the transitive
isomorphs of the two relations differ in the membership of ν/G. This contradicts
the asumption that τ is an E-pinned name.

Thus, P 
 Ṅ ⊂ V . I will now show that for every x ∈ V , P 
 x̌ ∈ Ṅ or
P 
 x̌ /∈ Ṅ . Otherwise, there would be a set x and conditions p, q ∈ P such
that p 
 x̌ ∈ Ṅ and q 
 x̌ /∈ Ṅ . In such a case, 〈p, q〉 
 τleft is not isomorphic
to τright since their respective transitive isomorphs differ in the membership of
x. This again contradicts the assumption that τ is an E-pinned name. Thus,
M = {x ∈ V : P 
 x̌ ∈ Ṅ} works as desired.

Example 4.1.8. κ(Eω1
) =∞.

Proof. For any cardinal κ consider the poset P = Coll(ω, κ) and a P -name for
some binary relation on ω isomorphic to the ordinal ordering on κ. Clearly, τ
is an Eω1

-pinned name. If 〈Q, σ〉 are a poset and a name Ē-related to 〈P, τ〉,
then Q 
 |κ| = ℵ0 and so |Q| ≥ κ.

4.2 A characterization

It seems to be quite difficult to characterize those analytic equivalence relations
E such that κ(E) attains a prescribed set of cardinal values (say κ(E) ≥ c+

or κ(E) ≤ c+) in descriptive set theoretic terms. It is a priori even not clear
if the collections of equivalence relations defined in this way are say in L(R).
In this section, I will provide such a characterization for the class of analytic
equivalence relations with the largest possible value of the pinned cardinal.

Theorem 4.2.1. Assume that there is a measurable cardinal. Let E be an
analytic equivalence relation on a Polish space X. The following are equivalent:

1. κ(E) =∞;

2. Eω1
≤wB E.

Proof. (2) implies (1) by Example 4.1.8 and Theorem 4.1.3. The large cardi-
nal assumption is not needed for this direction. For the (1)→(2) implication,
suppose that κ(E) =∞. Let κ be a measurable cardinal.

Claim 4.2.2. There is a poset P of size κ and an E-pinned P -name τ such
that τ is not Ē-related to any name on a poset of size < κ.

Proof. Since κ(E) = ∞, there is a poset Q and an E-pinned P -name σ which
is not Ē-equivalent to any name on a poset of size < κ. Choose an elementary
submodel M of a large enough structure such that |M | = κ, Vκ ⊂ M and
Q, σ ∈M , and let P = Q∩M and let τ = σ ∩M . I claim that P, τ works as in
the claim.

Indeed, if G ×H ⊂ P × P is a filter generic over V , then it is also generic
over M , by the elementarity of M and the forcing theorem in M M [G,H] |=
τ/G E τ/H, and by the Mostowski absoluteness between M [G,H] and V [G,H],
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V [G,H] |= τ/G E τ/H. This proves that the name τ is E-pinned. If R is a
poset in V of size < κ and ν is an E-pinned R-name and G×H ⊂ P × R is a
generic filter over V , then R, ν ∈ M , the filter G ×H also generic over M , by
the elementarity of M and the forcing theorem in M M [G,H] |= ¬τ/G E ν/H,
and by the Mostowski absoluteness between M [G,H] and V [G,H], V [G,H] |=
¬τ/G E σ/H. This proves that ν Ē τ fails and completes the proof of the
claim.

Choose a poset P of size κ and an E-pinned name τ as in the claim. Let M
be a countable elementary submodel of a large enough structure. Let Y be the
space of binary relations on ω, so Y = dom(Eω1

). By Lemma 2.4.6 and 2.4.2,
there are Borel functions f : Y → Y , g : Y ×M → ω, h : Y → P(ω) and
k : Y → X such that whenever y ∈ Y is a wellorder then f(y) is an isomorph
of the iteration of the model M of length y, g(y) is the iteration elementary
embedding of M into f(y), h(y) is a filter on g(y)(P ) generic over f(y), and
k(y) = g(y)(τ)/h(y). It will be enough to show that k is a Borel reduction of
Eω1

to E on the set of y ∈ Y which code well-orders.

Suppose first that y, z ∈ Y are well-orders of the same length. Then
f(y), f(z) are wellfounded and isomorphic. Write N for their common tran-
sitive isomorph, j : M → N for the iteration map, and let Q = j(P ) and
σ = j(τ). By the elementarity of the embedding j, N |= σ is an E-pinned
Q-name. Identify h(y), h(z) with filters on Q separately generic over N , so
k(y) = σ/h(y) and k(z) = σ/h(z). Let h′ ⊂ Q be a filter generic over both
countable models N [h(y)] and N [h(z)]. By the product forcing theorem, the
filters h′ × h(y) and h′ × h(z) are both Q × Q-generic over N . As N |= τ is
an E-pinned name, it follows that N [h′, h(y)] |= k(y) = σ/h(y) E σ/h′ and
N [h′, h(z)] |= k(z) = σ/h(z) E σ/h′. By the Mostowski absoluteness between
these two models and V , and the transitivity of the relation E, k(y) E k(z)
follows.

Suppose now that y, z ∈ Y are well-orders of different lengths; say that y
is shorter than z. Let Ny be the transitive isomorph of f(y), jy : M → Ny
the iteration map, Qy = jy(P ), σy = jy(τ); similarly for Nz, jz, Qz, σy. Identify
h(y), h(z) with filters onQy, Qz separately generic overNy, Nz, so k(y) = σ/h(y)
and k(z) = σ/h(z). Now, as P, τ ∈ Hκ+ , it is the case that Qy, σy ∈ Nz and
Nz |= |Qy| < jz(κ). Find a filter h′ ⊂ Qy generic over both the countable models
Ny[h(y)] and Nz, and let h′′ ⊂ Qz be a filter generic over both the countable
models Nz[h

′] and Nz[h(z)]. Let x′ = σy/h
′ and x′′ = σz/h

′′, both elements of
the space X. Since Ny |= σy is E-pinned, the Mostowski absoluteness between
V and Ny[h(y), h′] implies that k(y) E x′ holds. Since Nz |= σz is E-pinned,
the Mostowski absoluteness between V and Ny[h(z), h′′] implies that k(z) E x′′

holds. Finally, since Nz |= 〈Qz, τz〉 Ē 〈Qy, τy〉 fails by the choice of P and
the elementarity of the embedding jz, the Mostowski absoluteness between V
and Nz[h

′, h′′] implies that x′ E x′′ fails. In conclusion k(y) E k(z) fails as
required.
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4.3 Operations

In this section, I will prove that the pinned cardinal behaves naturally under the
usual operations on analytic equivalence relations such as the various products
and the Friedman–Stanley jump.

Theorem 4.3.1. Suppose that J is a Borel ideal on ω such that the equivalence
relation =J is pinned. Let 〈Ei : i ∈ ω〉 be a sequence of analytic equivalence
relations on respective Polish spaces Xi, and let E be the product of Ei modulo
J . Then κ(E) ≤ (supi κ(Ei))

+.

Theorem 4.3.2. Let E be an analytic equivalence relation on a Polish space
X. Then κ(E+) ≤ (2<κ(E))+.

To package the proofs in a most efficient way, the following technical lemma
will be useful.

Lemma 4.3.3. Let E be an analytic equivalence relation on a Polish space X.
Let κ be an infinite cardinal. The following are equivalent:

1. κ+ ≥ κ(E);

2. Coll(ω, κ) 
 if τ is an E-pinned name on a poset P , both in the ground
model, then τ is E-trivial.

Proof. For (1)→(2), suppose that κ+ ≥ κ(E). Every Ē-class then contains a
name on the poset Coll(ω, κ): each E-pinned name τ on some poset P is Ē-
equivalent to a name on a poset of size some κ(E). That poset regularly embeds
into Coll(ω, κ) by Fact 2.2.3, and so τ has a Ē-equivalent σ on Coll(ω, κ). Now,
P × Coll(ω, κ) 
 τ E σ, which by the forcing theorem can be rewritten as
Coll(ω, κ) 
 P 
 τ E σ. This confirms (2).

Suppose on the other hand that (2) holds. This means that for every E-
pinned name τ on a poset P there is a Coll(ω, κ)-name σ such that Coll(ω, κ) 

P 
 σ E τ . By the product forcing theorem, this means that P × Coll(ω, κ) 

τ E σ, in other words 〈Coll(ω, κ), σ〉 Ē 〈P, τ〉. This confirms (1).

Proof of Theorem 4.3.1. Let X =
∏
iXi be the domain of E. Let P be a poset

and τ an E-pinned name on P , both in V . Consider the P -name ȧ = {i ∈ ω : ∃p
in the P -generic filter such that τ(i) is an Ei-pinned name on P � p}.

Claim 4.3.4. P 
 ω \ ȧ ∈ J .

Proof. Suppose the opposite is forced by some condition p ∈ P . As τ is E-
pinned, there must be conditions p0, p1 ≤ p and a number i ∈ ω such that
〈p0, p1〉 
P×P τleft(i) Ei τright(i) and i /∈ ȧleft. Then, however, τ(i) is E-pinned
on P � p0 and so p0 
P i ∈ ȧ. This is a contradiction.
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Now, let κ = supi κ(Ei), let G ⊂ Coll(ω, κ) be a filter generic over V . By
Lemma 4.3.3 it will be enough to produce an element x ∈ X in V [G] such that
P 
 x̌ E τ . Work in V [G]. Let fi : 2ω → Xi/Ei be a bijection for each i ∈ ω,
and consider the P -name ν for an element of (2ω)ω defined by the following
formula: if there is p ∈ P in the generic filter on P such that τ(i) is an Ei-
pinned name on P � p, then by the application of Lemma 4.3.3 to Ei there must
be a point xi ∈ Xi such that P � p 
 x̌i Ei τ(i) and then let ν(i) be the point
y such that xi ∈ fi(y); otherwise let ν(i) = trash. Claim 4.3.4 shows that ν is
an =2ω

J -pinned name on P and the set {i ∈ ω : ν(i) =trash} ∈ J .
Since the relation =2ω

J is pinned in V , it is pinned also in V [G] by Corol-
lary 3.2.6 and so there must be a point y ∈ (2ω)ω in V [G] such that P 
 ν =J y̌.
Then, let x ∈ X be any point such that for every i ∈ ω, x(i) ∈ fi(y(i)) and
observe that P 
 x̌ E τ . This completes the proof.

Proof of Theorem 4.3.2. Let τ be an E+-pinned name on a poset P . Let κ =
2<κ(E) and let G ⊂ Coll(ω, κ) be a generic filter. By Lemma 4.3.3, it will be
enough to produce a point y ∈ Xω in the model V [G] such that P 
 y̌ E+ τ .

Back in the ground model, consider the set A = {〈σ, µ〉 : µ < κ(E), σ is a
nice E-pinned Coll(ω, µ)-name and Coll(ω, µ) × P 
 ∃i σ E τ(i)}. A simple
counting argument shows that the set A has size 2<κ(E). In V [G], for every
µ < κ(E) there is a filter Hµ ⊂ Coll(ω, µ) generic over V . Let y ∈ Xω be
any point which enumerates the set {σ/Hµ : 〈σ, µ〉 ∈ A}. Note that this set is
countable in V [G]. I claim that the point y ∈ Xω works as required.

The definition of the set A together with Fact 2.2.6 implies that P 

∀j∃i y(j) E τ(i). All that remains to be shown is that P 
 ∀j∃i y(i) E τ(j).
Suppose for contradiction that some condition p ∈ P forces this to fail as wit-
nessed by some specific number j ∈ ω. As τ is E+-pinned, there are conditions
p0, p1 ≤ p and a number k ∈ ω such that 〈p0, p1〉 
P×P τleft(j) E τright(k).
Then, τ(j) is an E-pinned name on P � p0. By the definition of κ(E), there
is a cardinal µ < κ(E) and an E-pinned name σ such that 〈Coll(ω, µ), σ〉 E
〈P � p0, τ〉. This means that 〈p, 1〉 
P×Coll(ω,µ) ∃i σ E τ(i), and since τ is
an E+-pinned name, this implies that P × Coll(ω, µ) 
 ∃i σ E τ(i). In other
words, 〈σ, µ〉 ∈ A and p0 
 τ(j) Ē σ/Hµ, and therefore p0 
 ∃i τ(j) E y̌(i).
This contradicts the choice of the condition p and the number j.

4.4 Model-theoretic examples

In this section, I will provide a number of orbit equivalences E for actions of
closed subgroups of S∞ with interesting values of κ(E).

Definition 4.4.1. Let ψ be an Lω1ω-sentence. Eψ is the the equivalence relation
of isomorphism of models of ψ with universe ω.

I do not know how to evaluate the cardinal κ(Eψ) for a general Lω1ω sentence
ψ. However, in a rather broad class of sentences, such an evaluation is readily
available.
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Definition 4.4.2. Let ψ be an Lω1ω sentence. Say that ψ is set-like if there is
a symbol R for a binary relation in the language of ψ and a countable ordinal
α ∈ ω1 such that ψ implies the statement “the relation R satisfies the axiom of
extensionality, and it is well-founded of rank < α”.

Note that wellfoundedness of at most a fixed countable rank is expressible in
the language Lω1ω.

Theorem 4.4.3. Suppose that ψ is a set-like Lω1ω sentence. Then Eψ is Borel,
and κ(Eψ) is the least uncountable cardinal κ such that ψ has no model of size
κ.

Proof. The argument depends on the transitive collapse theorem of Mostowski
[10, Theorem 6.15]: a wellfounded extensional relation is isomorphic to the ∈-
relation on some transitive set, and both the transitive set and the isomorphism
are unique. In particular, if two well-founded extensional relations are isomor-
phic, the isomorphism must be unique. Thus, the equivalence relation Eψ is
the one-to-one projection of the Borel set {〈x, y, π〉 : x, y ∈ X,π ∈ ωω and π is
an isomorphism of x, y}, and as such is Borel by a classical result of Lusin and
Suslin [14, Theorem 15.1].

For the computation of κ(Eψ), find a binary relational symbol R witnessing
that ψ is set-like.

Lemma 4.4.4. If P is a poset and τ an Eψ-pinned name, then there is a model
M |= ψ such that P 
 τ is isomorphic to M̌ .

Proof. Let 〈Ṅ ,∈〉 be the P -name for the transitive isomorph of 〈ω,Rτ 〉.

Claim 4.4.5. There is a set M ∈ V such that P 
 Ṅ = M̌ .

Proof. First argue that P 
 Ṅ ⊂ V . Otherwise, by a ∈-minimalization argu-
ment, there would be a condition p ∈ P and a P -name ν such that p 
 ν ∈ Ṅ
and ν ⊂ V . If G × H ⊂ P × P is a generic filter over V such that p ∈ G,
then ν/G ∈ V [G] \ V [H] by the product forcing theorem, and therefore τ/G is
not isomorphic to τ/H since the transitive isomorphs of the two differ in the
membership of ν/G. This contradicts the asumption that τ is an E-pinned
name.

Thus, P 
 Ṅ ⊂ V . I will now show that for every x ∈ V , P 
 x̌ ∈ Ṅ or
P 
 x̌ /∈ Ṅ . Otherwise, there would be a set x and conditions p, q ∈ P such
that p 
 x̌ ∈ Ṅ and q 
 x̌ /∈ Ṅ . In such a case, 〈p, q〉 
 τleft is not isomorphic
to τright since their respective transitive isomorphs differ in the membership of
x. This again contradicts the assumption that τ is an E-pinned name. Thus,
M = {x ∈ V : P 
 x̌ ∈ Ṅ} works as desired.

I will now equip the transitive set M with relations that will turn it into a
model of ψ. Clearly, RM =∈. For the other relations, first let π̇ : M̌ → ω be
a P -name for inverse of the unique Mostowski transitive collapse map between
〈ω,Rτ 〉 and 〈M,∈〉.
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Claim 4.4.6. Let S be an n-ary relational symbol in the language for the sen-
tence ψ and let v ∈Mn be an n-tuple. Then P 
 π ◦ v ∈ Sτ or P 
 π ◦ v /∈ Sτ .

Proof. If this failed, there would be conditions p, q ∈ P such that p 
 π ◦v ∈ Sτ
and q 
 π ◦ v /∈ Sτ . Then the condition 〈p, q〉 in the product P × P forces that
τleft and τright are not isomorphic: the map πleft ◦π−1right is the only candidate for
an isomorphism between τright and τleft, and it carries the tuple πright ◦v (which
is not in Sτright) to πleft ◦ v (which is in Sτleft). This is a contradiction.

Similar claim clearly holds for all functional symbols of the language of ψ.
Now for every relational symbol S let SM = {v : P 
 π ◦ v ∈ Sτ}, and for
every functional symbol F let FM (v) = m if P 
 F τ (π ◦ v) = π(m). The claim
immediately implies that P 
 π is an isomorphism of the model M with τ as
desired.

The theorem now easily follows. Suppose that κ is an uncountable cardinal.
If ψ has a model M of size κ then consider the poset P = Coll(ω, κ) and a P -
name τ for some isomorph of M with universe ω. Clearly, this is an Eψ-pinned
name. If Q is a poset and σ is a Q-name such that 〈P, τ〉 Ēψ 〈Q, σ〉, then Q 

the transitive isomorph of Rσ must be equal to the transitive isomorph of RM .
Since the universe of M has size κ, this means that Q 
 |κ| = ℵ0 and so |Q| ≥ κ.
Ergo, κ < κ(Eψ).

On the other hand, suppose that ψ has no model of size κ. By a downward
Löwenheim–Skolem argument, every model of ψ has size < κ. Let P be a poset
and τ be an Eψ-pinned name. By the claim, there is a model M of ψ such that
P 
 τ is isomorphic to M̌ . Certainly, the pair 〈P, τ〉 is Ēψ related to the pair
〈Q, σ〉, where Q = Coll(ω,M) and σ is some Q-name for an isomorph of M with
universe ω. Since |M | < κ, |Q| must be smaller than κ and κ(E) ≤ κ follows.

Corollary 4.4.7. For every countable ordinal α there is a Borel equivalence
relation Eα such that κ(Eα) = (iα)+.

Proof. Let ψα be an Lω1ω sentence in the language with one binary relational
symbol R saying “R satisfies the axiom of extensionality and has rank ≤ ω+α”.
ψα is clearly set-like. For every model M of ψα, its unique transitive isomorph
is a subset of Vω+α and therefore has size ≤ iα. At the same time, 〈Vω+α,∈〉
is a model of ψα of size iα. Theorem 4.4.3 then shows that κ(Eψα) = (iα)+ as
desired.

Corollary 4.4.8. For every countable ordinal α > 0 there is a Borel equivalence
relation Eα such that (provably) κ(Eα) = ℵα. For α > 2, such an equivalence
relation Eα cannot be Borel reducible to F2 and F2 cannot be Borel reducible to
Eα.
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Proof. First argue that for every countable ordinal α > 0 there is an Lω1ω

sentence φα which has models of all infinite cardinalities < ℵα but no model of
size ℵα. The proof goes by induction on α.

For α = 1 just let φα be any sentence which describes the natural ordering
on ω. For a limit ordinal α let φα be the disjunction of φβ for β ∈ α. For a
successor ordinal α = β+ 1 distinguish the case of β limit or β successor. If β is
limit, then let the language of φα contain new unary predicates Aγ for γ ∈ β and
let φα say “the predicates Aγ for γ ∈ β partition the universe and Aγ |= φβ”. If
β = γ + 1 is a successor ordinal, then let the language of φα contain new unary
predicates A,B, a binary predicate < and a binary functional symbol F and let
φα say “the predicates A,B partition the universe, A |= φβ , B |=< is a linear
order, and F : A × B → B is a function such that for every x ∈ B, the initial
segment of < up to x is a subset of the range of F (·, x)”. This clearly works.
For example, in the latter case, in any model M of φα, the predicate AM has
size at most ℵγ , and the predicate BM has a linear order on it whose proper
initial segments have size ≤ |AM |, so |BM | ≤ ℵγ+1 as desired.

Now, for every ordinal α > 0 let ψα be the sentence in the language of
φα together with a new binary relational symbol R which says “φα holds and
R is a relation satisfying the axiom of extensionality, which is wellfounded of
rank ≤ ω + α”. Clearly, ψα is set-like. Moreover, every model of φα can be
equipped with an additional relation R with which it becomes a model of ψα,
since |M | < ℵα ≤ iα = |Vω+α| and the ∈-relation on Vα is extensional and
wellfounded of rank ω + α. Thus, the sentence ψα has models of all infinite
cardinalities < ℵα. Theorem 4.4.3 now says that Eψα = ℵα.

To see that F2 cannot be Borel reducible to any Eα, suppose for contradiction
that h : dom(E)→ dom(F ) is a Borel reduction. Pass to a generic extension in
which c > ℵω1

. There, h is still a reduction of E to F , while κ(E) > κ(F ). This
contradicts Theorem 4.1.3. To see that Eα cannot be reducible to F2 for any
α > 2, pass to a generic extension in which the Continuum Hypothesis holds
instead.

To motivate the next corollary, recall a rare guest indeed in a book devoted
to descriptive set theory.

Definition 4.4.9. [10, page 58] The Singular Cardinal Hypothesis is the state-
ment that for every singular cardinal κ, if 2cof(κ) < κ then κcof(κ) = κ+.

The powerset of singular cardinals is much harder to manipulate than the pow-
erset of regular cardinals. As a result, the status of the singular cardinal hy-
pothesis remained open long after similar questions for regular cardinals were
resolved. In a major breakthrough, Magidor [19] proved that the singular car-
dinal hypothesis can fail at ℵω. The following corollary shows that Magidor’s
result can be injected into the Borel reducibility ordering of Borel equivalence
relations classifiable by countable structures.

Corollary 4.4.10. There are Borel equivalence relations E,F such that (prov-
ably) κ(E) = (ℵℵ0ω )+ and κ(F ) = max{c,ℵω+1}+. Under suitable large cardinal
hypothesis, E cannot be Borel reducible to F .
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Proof. For E, the first step is the construction of an Lω1ω sentence which has
models of size ℵℵ0ω but no larger. First, let χ be an Lω1ω sentence that has
models of size ℵω but not any larger, as obtained in the previous example. Let
φ be a sentence in the language of χ with additional unary predicates A,B,C
and a binary functionaly symbol f . φ will say: “the predicates A,B,C partition
the universe, A |= χ, B is ordered in type ω, and f : B × C → A is a function
such that for distinct i 6= j ∈ C the sets f ′′(·, i) and f ′′(·, j) are distinct”. The
sentence φ clearly works as desired.

Let ψ be a sentence in the language of φ with an additional binary rela-
tional symbol R which says “φ holds and the relation R satisfies the axiom of
extensionality and it is well-founded with rank < ω+ω+ 2”. The sentence ψ is
clearly set-like, and it has models of size ℵℵ0ω but no larger. Theorem 4.4.3 now
shows that κ(Eψ) = (ℵℵ0ω )+ as desired.

For F , just use the previous two examples to find set-like sentences φ0, φ1
such that φ0 has models of size c but no larger, and φ1 has models of size ℵω+1

but no larger. It is not difficult to see that F = Eφ0∨φ1
works as required.

To see that E cannot be Borel reducible to F , suppose for contradiction that
h : dom(E) → dom(F ) is a Borel reduction. Use a classical result of Magidor
[19] and pass to a generic extension in which the Singular Cardinals Hypothesis
fails at ℵω: ℵℵ0ω > max(c,ℵω+1). There, h is still a reduction of E to F , while
κ(E) > κ(F ). This contradicts Theorem 4.1.3.

Thus, one can (oh horror!) encode the status of the Singular Cardinal Hy-
pothesis at ℵω into the value of cardinal invariants of Borel equivalence relations
E,F which are even classifiable by countable structures, and turn the proof of
independence of SCH into a proof of Borel nonreducibility of E to F .

4.5 Combinatorial examples

Not all examples of equivalence relations with exotic values of κ(E) are related
to model theory. There are Borel equivalence relations reducible to F2 whose
pinned cardinal depends on the fine partition properties of small uncountable
cardinals. Some of them may be naturally defined from common objects of
interest in mathematical analysis.

Definition 4.5.1. Let X = (2ω)ω. For every natural number n > 1, let Bn ⊂ X
be the Borel set of all x ∈ X such that for every n-tuple 〈xi : i ∈ n〉 of distinct
elements of rng(x) there is i ∈ n such that xi is recursive in 〈xj : j ∈ n, j 6= i〉.

Theorem 4.5.2. Let n > 1. If Martin’s Axiom holds and c > ℵn, then κ(F2 �
Bn) = ℵn.

Proof. The argument is based on a classical partition theorem of Sierpiński.
Recall that if A is a set, n ∈ ω is a number and f : [A]n → P(A) is a function,
then a set a ⊂ A is free for f if for every b ∈ [a]n and i ∈ a \ b, i /∈ f(b).

Fact 4.5.3. (Sierpiński [8]) Let n > 1 be a number.
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1. Every function f : [ωn]n−1 → [ωn]ℵ0 has a free n-tuple.

2. There is a function f : [ωn−1]n−1 → [ωn−1]ℵ0 without a free n-tuple.

To see that κ(F2 � Bn) ≤ ℵn holds in ZFC, suppose that P is a poset and
τ is an F2-pinned P -name for an element of the set Bn. Claim 4.1.6 yields a
set A ⊂ 2ω such that P 
 rng(τ) = Ǎ. Consider the map f : [A]n−1 → [A]ℵ0

given by f(b) = {y ∈ A : y is recursive in b)}. The map f cannot have a
free set of size n, as this would contradict the definition of the set Bn and
the assumption that P 
 τ ∈ Ḃn. By Fact 4.5.3(1), it must be the case that
|A| < ℵn. Now, since 〈P, τ〉 is F̄2-equivalent to the pair 〈Coll(ω,A), σ〉, where
σ is the usual Coll(ω,A)-name for the generic enumeration of the set A, and
|Coll(ω,A)| < ℵn, it follows that κ(F2 � Bn) ≤ ℵn.

To see that κ(F2 � Bn) = ℵn under MA+c ≥ ℵn, I will need a simple ZFC
coding lemma.

Lemma 4.5.4. Let n ∈ ω be a nonzero natural number, let κ be a cardinal and
f : [κ]n → [κ]ℵ0 any function. Then there is a c.c.c. forcing adding an injection
π : κ → P(ω) such that for every set a ∈ [κ]n and every α ∈ f(a), π(α) is
recursive in the set π′′a.

Proof. Let 〈km : m ∈ ω〉 be a recursive sequence of increasing functions in
ωω with disjoint ranges. For a finite set b ⊂ P(ω) let eb be the increasing
enumeration of the set

⋂
b, for every m ∈ ω let hm(b) ⊂ P(ω) be the set of all l

such that eb ◦ km(l) is an odd number. I will produce the map π such that for
every set a ∈ [κ]n and every α ∈ f(a), there is a number m ∈ ω such that π(α)
is modulo finite equal to hm(π′′a).

Let R be the poset of all tuples r = 〈nr, πr, νr〉 so that

• nr ∈ ω, πr is a partial function from κ to P(nr) with finite domain dom(r);

• νr is a finite partial function from [rng(r)]n × ω to rng(r) such that
νr(a,m) ∈ f(a) whenever 〈a,m〉 ∈ dom(νr).

The ordering on R is defined by s ≤ r if nr ≤ ns, dom(r) ⊂ dom(s),
∀α ∈ dom(r) πr(α) = πs(α) ∩ nr, νr ⊂ νs, and for every 〈a,m〉 ∈ dom(νr),
whenever l is a number in the domain of (eπ′′s a \ eπ′′r a) ◦ km then eπ′′s a ◦ km(l)
is odd if and only if l ∈ πs(νr(a,m)). It is not difficult to see that R is indeed
an ordering. If G ⊂ R is a generic filter, in the model V [G] define the map
π : κ → P(ω) by setting π(α) =

⋃
r∈G πr(α). I claim that this function works.

This immediately follows from the following claims.

Claim 4.5.5. Whenever a ∈ [κ]n and β ∈ f(a), the set Da,β = {r ∈ R :
a ∪ {β} ⊂ dom(r),∃m νr(a,m) = β} is dense in R.

Proof. Let r ∈ R; I must find a condition s ≤ r in the set Da,β . For definiteness
assume that β /∈ dom(r). Choose m ∈ ω such that 〈a,m〉 /∈ dom(νr). Consider
the condition s ≤ r defined by ns = nr, πs = πr∪{〈α, 0〉 : α ∈ a\dom(r), 〈β, 0〉},
νs = νr ∪ {〈a,m, β〉}. The condition s ≤ r is in the set Da,β as required.
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Claim 4.5.6. For every a ∈ [κ]n and every k ∈ ω, the set Da,k = {r ∈ R : a ⊂
dom(r) and the set

⋂
π′′r a has at least k elements} is dense in R.

Proof. Fix a, k and let r ∈ R be an arbitrary condition. I must find a condition
s ≤ r in the set Da,k. First of all, the previous claim shows that one can
strengthen r to include all ordinals in a. Increasing nr if necessary, I may also
assume that k < nr.

Consider the set b = π′′r a and the function eb; write k′ = dom(eb). If k ≤ k′
then s = r will work. Otherwise, it is easy to find an increasing sequence
d = 〈mi : k′ ≤ i < k〉〉 of numbers larger than nr such that, writing e = eb ∪ d,
for every natural number m such that 〈a,m〉 ∈ dom(νr) and every l such that
k′ ≤ km(l) < k, mkm(l) is odd if and only if l ∈ r(νr(a,m)). The condition s ≤ r
defined by ns = mk−1 + 1, dom(πs) = dom(πr), ∀β ∈ a pis(β) = πr(a) ∪ {mi :
k′ ≤ i < k}, ∀β ∈ dom(πr) \ a πs(β) = πr(β), and νs = νr, is in the set Da,k as
desired.

Claim 4.5.7. The poset R is c.c.c.

Proof. Let 〈rα : α ∈ ω1〉 be conditions in R. The usual ∆-system and counting
arguments can be used to thin down the collection if necessary so that the sets
dom(rα) for α ∈ ω1 form a ∆-system with root b and for all a ∈ [b]n and
all α ∈ ω1, f(a) ∩ dom(rα) ⊂ b. Moreover, I can require that the increasing
bijection between dom(rα) and dom(rβ) extends to an isomorphism of rα and
rβ for every α, β ∈ ω1.

I claim that any two conditions in such a collection are compatible. Indeed,
whenever α, β ∈ ω1, then the condition s defined by ns = nrα , πs = πrα∪πrβ and
νs = νrα ∪ νrβ is easily checked to be a common lower bound of the conditions
rα, rβ .

Now, fix a function f : [ωn−1]n−1 → [ωn−1]ℵ0 without a free n-element set
as in Fact 4.5.3(2). Use Martin’s Axiom and the lemma to produce an injection
π : ωn−1 → P(ω) such that for every set a ∈ [ωn−1]n−1 and every β ∈ f(a),
π(β) is recursive in π′′a. Write A = rng(π), consider the poset P = Coll(ω,A)
and the P -name τ for the generic enumeration of the set A in ordertype ω. A
brief review of definitions shows that P is an F2-pinned name for an element of
the set Bn. It is not F̄2-related to any name on a poset of size < ℵn−1 since it
necessitates the collapsing of the cardinal |A| = ℵn−1 to ℵ0. This completes the
proof of the theorem.

One can ask whether the recursivity can be replaced by some other conditions
more intimately tied to some preexisting mathematical structures. For example,

Question 4.5.8. LetG be a Borel group and n ∈ ω be a number; writeX = Gω.
Consider the set Dn ⊂ X consisting of those x ∈ X such that for every n-tuple
of distinct elements of rng(x), one element of the tuple is in the algebraic closure
of the remainder of the tuple. What is κ(F2 � Dn)? Can it be used to distinguish
between various Borel groups?



4.5. COMBINATORIAL EXAMPLES 45

The next example relies on a partition theorem discovered by Komjáth and
Shelah.

Definition 4.5.9. The function g : [P(ω)]<ℵ0 → [ω]<ℵ0 is defined by g(a) =
{min(x \m+ 1) : x ∈ a} if a is a set of size at least two and consists of pairwise
almost disjoint sets and m is the largest number which appears in at least two
of them; g(a) = min(x) if a = {x} is a singleton; and otherwise g(a) = 0. Let
n be a nonzero natural number, write X = (P(ω))ω and let Bn = {x ∈ X : no
finite set a ⊂ rng(x) can be written in more than 2n − 1 ways as a = b ∪ c such
that b 6= c and g(b) = g(c)}.

Theorem 4.5.10. Assume MA+c > ℵω. For every nonzero number n ∈ ω,
κ(F2 � Bn) = ℵn+1.

Proof. I will use the following partition theorem:

Fact 4.5.11. (Komjáth, Shelah[15]) Let n be a nonzero natural number.

1. For every function f : [ωn]<ℵ0 → ω there is a finite set a ⊂ ωm which
can be written in at least 2n − 1 ways as a = b ∪ c such that b 6= c and
f(b) = f(c)}.

2. If MAℵn holds then there is a function f : [ωn]<ℵ0 → ω such that every
finite set a ⊂ ωm can be written in at most 2n − 1 ways as a = b ∪ c such
that b 6= c and f(b) = f(c)}.

It is now easy to argue in ZFC that for every n > 0, κ(F2 � Bn) ≤ ℵn+1.
Suppose that P is a poset and τ is a F2-pinned element of the Borel set Bn.
By Claim 4.1.6, there is a set A ⊂ P(ω) such that P 
 rng(τ) = Ǎ. Since
P 
 τ ∈ Ḃ, it must be the case that no finite set a ⊂ A can be written in more
than 2n−1 ways as a = b∪c such that b 6= c and g(b) = g(c)}. By Fact 4.5.11(1),
it must be the case that |A| < ℵn+1. Consider the poset Q = Coll(ω,A) and the
Q-name σ for the generic enumeration of the set A in ordertype ω. It is clear
that |Q| < ℵn+1 and 〈P, τ〉 F̄2 〈Q, σ〉 as desired.

For the other inequality, a simple coding lemma is necessary.

Lemma 4.5.12. Suppose that κ is a cardinal and F is an equivalence relation
on [κ]<ℵ0 with countably many classes. Then there is a c.c.c. poset R adding
an injection π : κ → P(ω) such that the equivalence relation on [κ]<ℵ0 induced
by g ◦ π is finer than F .

Proof. Let f : [κ]<ℵ0 → ω be a map inducing the equivalence relation F . Let
ν : [ω]<ℵ0 → ω be sufficiently generic map such that ν(g(0)) = f(0). Let R be
the poset of all maps r such that

• dom(r) ⊂ κ is a finite set;

• for every α ∈ dom(r) the value r(α) is a nonempty subset of ω;

• for every α ∈ dom(r), ν(min(r(α))) = f(α);
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• for every set a ⊂ dom(r) of size at least 2 there is a number which belongs
to at least two sets r(α), r(β) for α 6= β ∈ a, and writing m for the largest
such number, r(α) \m + 1 6= 0 holds for every α ∈ a, and ν({min(r(α) \
m+ 1) : α ∈ a}) = f(a).

The ordering is defined by s ≤ r if for every α ∈ dom(r), s(α) end-extends r(α),
and the sets s(α)\r(α) are pairwise disjoint for α ∈ dom(r). IfG ⊂ R is a generic
filter, in the model V [G] let π : κ → P(ω) be defined by π(α) =

⋃
r∈G r(α);

I claim that this is the function with the requested properties. This follows
immediately from the following claims.

Claim 4.5.13. The set Dα = {r ∈ R : α ∈ dom(r)} is dense in R for every
α ∈ κ.

Proof. Let α ∈ κ and r ∈ R; I must produce s ≤ r such that α ∈ dom(s).
Enumerate dom(r) as βi for i ∈ k and write α = βk. Use the genericity of the
function ν to find numbers m < m0 < m1 < . . .mk−1 and pairwise distinct nji
for i ∈ k, j ∈ k + 1 so that

• ν(m) = f(α) and m0 > max
⋃

rng(r);

• mi < nji for every j ∈ k + 1;

• for every nonempty set a ⊂ dom(r) ∪ {α} and every i ∈ k, ν({nji : βj ∈
a}) = f(a).

Once this is done, just consider the function s defined by dom(s) = dom(r)∪
{α}, s(α) = {m,mi : i ∈ k, nki : i ∈ k}, and for every i ∈ k, s(βi) = r(βi) ∪
{mi, n

i
j : j ∈ k}. It is not difficult to observe that s ∈ R and s ≤ r as desired.

Claim 4.5.14. R has c.c.c.

Proof. In fact, R is semi-Cohen in the sense of [1], but we will not need that
fact here. By the usual ∆-system arguments, it is enough to show that any
two conditions r, s ∈ R such that r � dom(r) ∩ dom(s) = s � dom(r) ∩ dom(s),
are compatible. To find the lower bound, enumerate dom(r) ∪ dom(s) as βi for
i ∈ k, enumerate (dom(r) \ dom(s)) × (dom(s) \ dom(r)) as uj for j ∈ l. Use
the genericity of the function ν to build numbers m0 < m1 < · · · < ml−1 and
pairwise distinct numbers nji for i ∈ k and j ∈ l so that

• m0 > max(
⋃

rng(r) ∪
⋃

rng(s));

• mj < nji < mj−1 for every j ∈ l;

• for every set a ⊂ dom(r) ∪ dom(s), ν({nji : βi ∈ a}) = f(a).

The lower bound is then a function t defined by dom(t) = dom(r)∪ dom(s), for
α ∈ dom(r), α = βi set t(α) = r(α) ∪ {nji : j ∈ l} ∪ {mj : α appears in the pair

uj}. Similarly, for α ∈ dom(s), α = βi set t(α) = s(α) ∪ {nji : j ∈ l} ∪ {mj : α
appears in the pair uj}. It is not difficult to check that t ≤ r, s as required.



4.5. COMBINATORIAL EXAMPLES 47

Claim 4.5.15. R forces f = ν ◦ g ◦ π.

Proof. This is clear from the definition of the poset R.

It follows that the equivalence relation on [κ]<ℵ0 induced by g ◦ π must
be finer than the one induced by f , i.e. F . This completes the proof of the
lemma.

Now, suppose that MAℵn holds, and use Fact 4.5.11(2) to find a function f :
[ωn]<ℵ0 → ω such that every finite set a ⊂ ωm can be written in at most 2n− 1
ways as a = b∪c such that b 6= c and f(b) = f(c)}. Use Lemma 4.5.12 to find an
injection π : ωn → P(ω) such that on [ωn]<ℵ0 , the equivalence relation induced
by g ◦ π is finer than that induced by f . It follows that the Coll(ω, ωn)-name τ
for a generic enumeration of rng(π) is an F2-pinned name for an element of Ḃn
which is not equivalent to any name on a smaller poset since |rng(π)| = ℵn.

As a last example I will present a simple analytic equivalence relation weakly
reducible to F2 whose pinned cardinal depends on the status of Chang’s con-
jecture. We will not need anything about Chang’s conjecture except for one
equivalent restatement quoted below. Consistency of Chang’s conjecture re-
quires some modest large cardinals.

Definition 4.5.16. The Chang’s conjecture is the statement that every first
order model of type (ℵ2,ℵ1) has an elementary submodel of type (ℵ1,ℵ0).

Definition 4.5.17. Let ω =
⋃
n,m∈ω an,m be a partition of ω into infinite sets.

For almost disjoint sets b, c ⊂ ω such that b is lexicographically less than c let
f(b, c) = n and f(c, b) = m if max(b ∩ c) ∈ an,m. Let X = (P(ω))ω, and let
B ⊂ X be the coanalytic set of all x ∈ X such that rng(x) consists of pairwise
almost disjoint subsets of ω and there are no infinite subsets d, e ⊂ rng(x) such
that f � d × e is constant. Let E be the equivalence relation on X connecting
x, y if either both of them fail to belong to B, or else rng(x) = rng(y).

Theorem 4.5.18. Assume MA+c > ℵ1. The following are equivalent:

1. Chang’s conjecture;

2. κ(E) ≤ ℵ2.

Proof. The argument is based on the following partition theorem:

Fact 4.5.19. (Todorcevic, [25])

1. If Chang’s conjecture holds, then for every partition of ω2
2 into countably

many pieces, one piece of the partition contains a product of infinite sets.

2. If MA holds and Chang’s conjecture fails, then there is a partition of ω2
2

into countably many pieces such that no piece of the partition contains a
product of infinite sets.
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To show in ZFC that Chang’s conjecture implies κ(E) ≤ ℵ2, let P be a poset
and let τ be an E-pinned P -name. I must produce a poset Q of size ℵ1 and a
name on it Ē-related to τ . If P 
 τ /∈ B, then the name τ is trivial and so a
trivial poset Q will work. Suppose on the other hand that P 
 τ ∈ Ḃ. Then
τ must be an F2-pinned name and Claim 4.1.6 provides a set A ⊂ P(ω) such
that P 
 rng(τ) = Ǎ. Let f : A2 → ω be the map defined by f(b, c) = n and
f(c, b) = m if max(b ∩ c) ∈ an,m and b is lexicographically smaller than c. This
map is not constant on any product of two infinite subsets of A since otherwise
P 
 τ ∈ B would fail. Fact 4.5.19(1) together with the Chang’s conjecture
assumption show that |A| < ℵ2. Consider the poset Q = Coll(ω,A) with its
canonical name σ for a generic enumeration of the set A. Clearly, τ Ē σ, and
|Q| < ℵ2 as required.

Now, assume that MA holds and Chang’s conjecture fails; I must conclude
that κ(E) > ℵ2. I will use a simple ZFC coding lemma.

Lemma 4.5.20. Let κ be a cardinal and g : κ2 → ω be a function. Then there
is a c.c.c. poset R adding an injection π : κ→ P(ω) such that g = f ◦ π.

Proof. Let R be the poset of all functions r such that

• dom(r) ⊂ κ is a finite set;

• rng(r) consists of finite subsets of ω such that neither of them is an initial
segment of another;

• for every α 6= β such that r(α) is lexicographically smaller than r(β), the
set r(α) ∩ r(β) is nonempty, and its maximum belongs to the set am,n
where g(α, β) = m and g(β, α) = n.

The ordering on R is defined by s ≤ r if dom(r) ⊂ dom(s), for every α ∈ dom(r)
the set r(α) is an initial segment of s(α), and the sets {s(α)\r(α) : α ∈ dom(r)}
are pairwise disjoint. If G ⊂ R is a generic filter, in the model V [G] let π : κ→
P(ω) be defined by π(α) =

⋃
r∈G r(α). The function π is as required. This

follows immediately from the following claims.

Claim 4.5.21. For every α ∈ κ the set Dα = {r ∈ R : α ∈ dom(r)} is dense
in R.

Proof. Let α ∈ κ be an ordinal and r ∈ R be a condition; I must produce
a condition s ≤ r such that α ∈ dom(s). It will be the case that s(α) ∩
max(

⋃
rng(r)) + 1 = 0; this way, s(α) will be lexicographically smaller than all

s(β) for β ∈ dom(r). List dom(r) as βi for i ∈ j, and find pairwise distinct
numbers mi for i ∈ j so that

• mi ∈ am,n where g(α, β) = m and g(α, β) = n;

• each mi is greater than max(
⋃

rng(r)).
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Then, let s be the function defined by dom(s) = dom(r) ∪ {α} and s(βi) =
r(βi) ∪ {mi} and s(α) = {mi : i ∈ j}. It is immediate that the condition s
works.

Claim 4.5.22. The poset R is c.c.c.

Proof. By the usual ∆-system arguments it is only necessary to show that any
two conditions r, s ∈ R such that r � dom(r)∩dom(s) = s � dom(r)∩dom(s) are
compatible in the poset R. Strengthening the conditions r, s on dom(r)\dom(s)
and dom(s) \ dom(r) respectively if necessary, I may assume that no set in
rng(r)∪ rng(s) is an initial segment of another. Enumerate (dom(r)\dom(s))×
(dom(s)\dom(r)) as ui for i ∈ j and find pairwise distinct numbers mi for i ∈ j
such that

• if ui = 〈α, β〉 and r(α) is lexicographically smaller than s(β) then mi ∈
am,n where g(α, β) = m and g(β, α) = n;

• if ui = 〈α, β〉 and r(α) is lexicographically greater than s(β) then mi ∈
am,n where g(α, β) = n and g(β, α) = m;

• all numbers mi are greater than max(
⋃

rng(r) ∪
⋃

rng(s)).

In the end, let t be the function defined by dom(t) = dom(r) ∪ dom(s), for all
α ∈ dom(r) let t(α) = r(α) ∪ {mi : α appears in ui}, and for all β ∈ dom(s)
let t(β) = s(β) ∪ {mi : β appears in ui}. It is not difficult to check that t is a
common lower bound of the conditions r, s as desired.

Let g : ω2
2 → ω be a function which is not constant on the product of

any two infinite sets, as obtained by Fact 4.5.19. Use Martin’s Axiom and the
previous lemma to produce an injection π : ω2 → P(ω) such that g = f ◦ π.
Let A = rng(π), let P = Coll(ω,A), and let τ be the P -name for the generic
enumeration of the set A in ordertype ω. Clearly, τ is an F2-pinned name, and
the choice of the function g shows that P 
 τ ∈ Ḃ. The name τ is not equivalent
to any name on a smaller poset since it necessitates the collapse of the size of
the set A to ω. This completes the proof of the theorem.

As was the case with previous examples, one can adjust the definition of E
to shed light on various mathematical structures.

Question 4.5.23. Let X be any Borel linearly ordered metric space, let R+ =⋃
m,n∈ω am,n be a partition into dense Borel sets, let f : X2 → ω be the function

defined by f(x, y) = m if x < y and d(x, y) ∈ am,n and f(y, x) = n if x < y
and d(x, y) ∈ am, n, and let B ⊂ Xω be the collection all elements z ∈ Xω such
that f is not constant on any product of infinite subsets of rng(z). What is
κ(E2 � B)? Can it be used to distinguish various metric spaces?
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As a final remark in this section, with such wealth of analytic equivalence
relations with interesting values of their pinned cardinal, one can naturally ask
about limitations of the search for new examples. The most obvious question
of this type is the following.

Question 4.5.24. Characterize the class P of all cardinals κ such that there
is an analytic (Borel, classifiable by countable structures etc.) equivalence rela-
tions such that κ(E) = κ.

There are many natural, weaker yes-no questions that would shed much light
on the whole subject if answered in any direction.

Question 4.5.25. Is the class P closed under the cardinal successor function?

Question 4.5.26. Let E be an analytic equivalence relation and κ the first
weakly compact cardinal. Does κ(E) > κ imply κ(E) =∞?

Question 4.5.27. Is it consistent that there is a Borel equivalence relation E
such that κ(E) is a limit cardinal of uncountable cofinality?



Chapter 5

Cardinalistic equivalence
relations

5.1 Definition and basic concerns

One can ask how much forcing sophistication is really necessary to produce
pinned names. After all, the pinned names in the previous sections all were
essentailly cardinal collapse names. It turns out that there is a class of equiva-
lence relations for which this is indeed always the case, and it includes all orbit
equivalence relations and many more. At the same time, I will produce a sim-
ple Borel equivalence relation for which more sophisticated pinned names can
occur.

Definition 5.1.1. An analytic equivalence relation E on a Polish space X is
cardinalistic if for every E-pinned name τ on a poset P there is a cardinal κ(τ)
such that for every poset Q, Q carries a name Ē-related to τ if and only if it
collapses κ(τ) to ℵ0. For trivial names write κ(τ) = ℵ0.

The definition reflects a common feature of arguments presented earlier–a
pinned name for equivalence relations associated with isomorphism of structures
is often associated with an isomorphism type of an uncountable structure in the
ground model. Then, introducing an element of a Polish space coding it is
equivalent to collapsing the size of that structure to ℵ0.

The notion of cardinalistic equivalence relation, as compared with say pinned
equivalence relation, has the disadvantage that it is not absolute between various
forcing extensions. For example, the mutual domination equivalence relation of
Definition 5.3.1 is cardinalistic in L, with the possible values κ(τ) just ℵ0 (for
trivial pinned names) and ℵ1 (for nontrivial pinned names); however, under
Martin’s Axiom it is not cardinalistic as there is a nontrivial pinned name on
Namba forcing under those conditions. Still, the class of cardinalistic equiva-
lence relations is interesting and leads to ergodicity results.

51
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Theorem 5.1.2. If E,F are analytic equivalence relations, E ≤wB F , and F
is cardinalistic, then E is cardinalistic.

Proof. Let E,F be analytic equivalence relations on respective Polish spaces
X,Y , let a ⊂ X be a countable set and let h : X → Y be a Borel function which
is a reduction of E to F on X \ [a]E . Suppose that F is cardinalistic. Let P
be a poset and τ an E-pinned P -name. Either, P 
 ∃x ∈ ǎ τ E x, and then
κ(τ) = ℵ0. Or, P 
 ¬∃x ∈ ǎ τ E x. Then, ḣ(τ) is an F -pinned P -name, and so
κ = κ(ḣ(τ)) exists. It will be enough to show that κ(τ) = κ.

Let V [G] be a generic extension of V , and work in V [G]. I must verify the
equivalence in Lemma 5.2.10(2). If κ is countable, then there is y ∈ Y such
that P 
 ḣ(τ) F y̌ by an application of Lemma 5.2.10 to F and ḣ(τ). By the
Shoenfield absoluteness between V [G] and its P -extension there is an element
x ∈ X \ [a]E such that h(x) F y. As the function h remains a reduction, it must
be the case that P 
 τ E x̌ as desired. Suppose on the other hand that there
is x ∈ X in V [G] such that P 
 τ E x̌. As the function h remains a reduction
in the P -extension of V [G], it is also the case that P 
 h(τ) F h(x). By
Lemma 5.2.10(2) applied to F and ḣ(τ), κ must be countable. This completes
the proof of (1).

5.2 Operations

The class of cardinalistic equivalence relations contains all orbit equivalence
relations, and it is closed under a good number of natural operations. This is
what I prove in this section.

Theorem 5.2.1. Every orbit equivalence relation generated by a continuous
Polish group action is cardinalistic.

Proof. Let Gy X be a Polish group continuously acting on a Polish space and
let E denote the resulting orbit equivalence relation on X. Let τ be an E-pinned
name on some poset P . The main point of the proof is that the Ē-equivalence
class of τ has a canonical representative up to the forcing equivalence. Let PG
be the poset of nonempty open subsets of G ordered by inclusion, adding a
single point ġgen ∈ G. Let σ be the P × PG-name for the element ġgen · τ–so
clearly τ Ē σ. Let Q be the regular subalgebra of the completion of P × PG
completely generated by the name σ. It turns out that the pair 〈Q, σ〉 up
to forcing isomorphism does not depend on the initial choice of 〈P, τ〉 in its
Ē-equivalence class, and Q is in fact the poset Coll(ω, κ) for some cardinal κ.
Then κ = κ(τ) will work as required in the definition of cardinalistic equivalence
relation.

I will start with a seemingly unrelated pure forcing lemma. Whenever µ is
an ordinal and f, g : µ<ω → P(µ) are functions, write f ∧ g for the function
x 7→ f(x) ∩ g(x). A set a ⊂ µ is said to be closed under f if for every tuple
x ∈ a<ω the value f(x) is a subset of a. Let λ be a cardinal. Two forcing
extensions V [G0] and V [G1] are said to be µ, λ-perpendicular over V if for every
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f0 : µ<ω → [µ]ℵ0 in V [G0] and f1 : µ<ω → [µ]ℵ0 in V [G1] there is a set a ∈ V ,
of size < λ in V , closed under the function f0 ∧ f1.

Lemma 5.2.2. Suppose λ is a regular cardinal, R0, R1 are posets preserving
regularity of λ, and µ is an ordinal. In some forcing extension, there are filters
G0 ⊂ R0, G1 ⊂ R1 separately generic over V , such that the models V [G0] and
V [G1] are µ, λ-perpendicular over V .

Proof. Suppose first that R is a poset preserving regularity of λ, a ⊂ µ is a set,
u is a countable set of R-names for functions from µ<ω to [µ]ℵ0 , and r ∈ R is a
condition. Say that a is good for r, u if for every set b ⊂ µ of size < λ disjoint
from a there is a condition r′ ≤ r forcing that for no x ∈ a<ω, no β ∈ b and no
σ ∈ u it is the case that β ∈ σ(x).

Claim 5.2.3. For every r, u and every set a ⊂∈ [µ]<λ there is a set a′ ⊃ a in
[µ]<λ which is good for r, u.

Proof. Suppose that this fails and by induction on α ∈ λ build pairwise disjoint
sets aα ∈ [µ]<λ such that a0 = a and aα witnesses that

⋃
β∈α aβ is not good

for r, u. Since P preserves the regularity of λ,a pressing down argument shows
there must be a condition s ≤ r and an ordinal α ∈ λ such that no element of⋃
{aβ : β ≥ α} belongs to any set σ(x) where x ∈ (

⋃
β∈α aβ)<ω and σ ∈ u. This

contradicts the choice of the set aα.

Towards the proof of the lemma, let S be the poset consisting of quintuples
s = 〈r0s , r1s , u0s, u1s, as〉 such that r0s , r

1
s are conditions in R0, R1 respectively,

u0s, u
1
s are countable collections of R0 and R1-names for functions from µ<ω to

µℵ0 , as ∈ [µ]<λ, and either as is good for r0s and u0s in R0, or as is good for r1s
and u1s in R1. The ordering is defined by t ≤ s if r0t ≤ r0s , r

1
t ≤ r1s , u

0
s ⊂ u0t ,

u1s ⊂ u1t , as ⊂ at, and (*) for every ordinal α ∈ at \ as and every finite tuple
u ∈ a<ωs , either r0t 
R0 ∀σ ∈ u0s α̌ /∈ σ(u) or r1t 
R1 ∀σ ∈ u1s α̌ /∈ σ(u). It is not
difficult to see that S is a partial order with largest condition 〈1R0 , 1R1 , 0, 0, 0〉.
If H ⊂ S is a generic filter over V , let G0 ⊂ R0 be the filter generated by
{r0s : s ∈ H}, and let G1 ⊂ R1 be the filter generated by {r1s : s ∈ H}. I
will show that the two filters have the desired properties. The following is the
required density claim in the ground model.

Claim 5.2.4. The following sets are dense in S:

1. the set C1 = {s ∈ S : as is good for r0s and u0s in R0}, and similarly on
the R1 side;

2. if D ⊂ R0 is open dense, the set C2 = {s ∈ S : r0s ∈ D}, and similarly on
the R1 side;

3. if σ is an R0 name for a function from µ<ω to [µ]ℵ0 , the set C3 = {s ∈
S : σ ∈ u0s}, and similarly on the R1 side;

4. if a ∈ [µ]<λ, the set C4 = {s ∈ S : a ⊂ as}.
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Proof. For (1), fix a condition s ∈ S and work to strengthen s to get a condition
in the set C1. If as is good for r0s and u0s in R0, then we are done. Thus, assume
instead that as is good for r1s and u1s in R1. Use Claim 5.2.3 to find a set b ⊃ as
in [µ]<λ which is good for r0s and u0s in R0. Use the goodness of as to find a
condition r ≤ r1s forcing in R1 that for no x ∈ a<ωs , no β ∈ b \ as and no σ ∈ u0s
it is the case that β ∈ σ(x). The condition 〈r0s , r, u0s, u1s, b〉 is as required.

For (2), suppose that D ⊂ R0 is open dense and s ∈ S is a condition, and
work to strengthen s to a condition in the set C2. First, use (1) to strengthen
s if necessary so that as is good for r1s and u1s. Then, find a condition r ≤ r0s in
the poset R0 in D. The condition 〈r, r1s , u0s, u1s, as〉 is as required.

For (3), suppose that σ is an R0 name, and s ∈ S is a condition. Strengthen
s if necessary so that as is good for r1s and a1s in R1. The condition 〈r0s , r1s , a0s ∪
{σ}, a1s, as〉 ≤ s is in the set C3.

For (4), suppose that a ∈ [µ]<λ and s ∈ S. Use (1) to strengthen s if
necessary so that as is good for r1s and a1s in R1. Use Claim 5.2.3 to find a set
b ⊃ as ∪ a is good for r0s , and use the goodness of as to find a condition r ≤ r1s
forcing in R1 that for no x ∈ a<ωs , no β ∈ b \ as and no σ ∈ u0s it is the case
that β ∈ σ(x). The condition 〈r0s , r, u0s, u1s, b〉 ≤ s is in the set C4.

Now, Claim 5.2.4(2) shows that the filters G0 ⊂ R0 and G1 ⊂ R1 are
separately generic over V . Now, suppose that f0 ∈ V [G0] and f1 ∈ V [G1] are
functions from µ<ω to [µ]ℵ0 , and find names σ0, σ1 such that f0 = σ0/G0 and
f1 = σ1/G1. Use Claim 5.2.4(4) to find a condition s ∈ S such that σ0 ∈ u0s and
σ1 ∈ u1s. I claim that the set as is closed under the function f0 ∧ f1. Indeed,
Claim 5.2.4(3) shows that the union

⋃
{at : t ∈ H} is equal to µ, and so for

every ordinal α ∈ µ \ as and every finite sequence x ∈ a<ωs itit is either the case
that α /∈ f0(x) or α /∈ f1(x) from the condition (*) in the definition of the poset
S.

Let E be a orbit equivalence relation on a Polish space X. Let P be a
poset and τ and E-pinned name on P . Find the smallest cardinal λ such that
there is a poset Q and an E-pinned name σ on Q such that 〈P, τ〉 Ē 〈Q, σ〉 and
Q 
 λ = ω1. Switching from P to Q if necessary, we may assume that in fact
P 
 λ = ω1. I will show that λ is a successor cardinal, and its predecessor is
the cardinal κ(τ) with the required properties.

Let G be a Polish group, and let G y X be a continuous action such that
E is its orbit equivalence. Consider the poset P × PG, where PG is the poset
of all nonempty basic open subsets of G ordered by inclusion, adding a generic
element ġgen. Consider the poset Q generated by the P ×PG-name σ = ġgen · τ .

Lemma 5.2.5. For every cardinal µ, Q 
 ([µ]<λ)V is a stationary set.

Proof. In other words P × PG forces V [σ] |= ([µ]<λ)V is a stationary set. Sup-
pose for contradiction that some condition 〈p, q〉 ∈ P × PG forces the opposite,
and identifies some ordinal µ such that the set ([µ]λ)V is not stationary in V [σ].
Apply Lemma 5.2.2 to pass to a generic extension V [H] in which there are two



5.2. OPERATIONS 55

filters G0, G1 ⊂ P containing p and separately generic over V , such that the
extensions V [G0] and V [G1] are µ, λ-perpendicular over V . Write x0 = τ/G0

and x1 = τ/G1.

Claim 5.2.6. x0 E x1.

Proof. In some further forcing extension there is a filter G2 ⊂ P which is generic
over V [G0, G1]. As τ is an E-pinned name, the forcing theorem in V implies
V [G0, G2] |= x0 = τ/G0 E τ/G2 and V [G1, G2] |= x1 = τ/G1 E τ/G2; by
transitivity of E, x0 E x1 as desired.

Let ggen ∈ G ∩ q be a point PG-generic over V [H], and consider the model
W = V [ggen · x0]. I will reach a contradiction by showing that every function
e : µ<ω → µ in W has a closure point in V which is of size < λ in V .

As x0 E x1, there is a group element g ∈ G in the model V [H] such that
g · x1 = x0. As the multiplication by g on the right induces an automorphism
of the poset PG, the point ggeng is PG-generic over V [H]. Moreover, the point
ggen · x0 ∈ X is equal to ggeng · x1. Thus, the model W is a subset of PG-
extensions V [G0][ggen] and V [G1][ggeng] of V [G0] and V [G1] respectively. Thus,
a standard c.c.c. argument shows that there are functions f0 ∈ V [G0] and
f1 ∈ V [G1] from µ<ω to [µ]ℵ0 such that for every x ∈ µ<ω, e(x) ∈ f0(x) and
e(x) ∈ f1(x). Use the perpendicularity of the extensions V [G0] and V [G1] to
find a set a ∈ [µ]<λ in V closed under f0 ∧ f1. This set must then be closed
under e as well, completing the proof.

Now, use Lemma 5.2.5 to find a condition q ∈ Q to find an elementary
submodel M of a large structure of size < λ and a condition q ∈ Q which is
master for M . It will be enough to show that for every poset R collapsing the
size of |M | to ℵ0 there is an R-name which is Ē-related to τ ′. Then, by the
minimal choice of λ and the possibility that R = Coll(ω, |M |), it follows that
|M |+ = λ, and κ(τ) = |M | works as required. Let R be a poset collapsing |M |
to ℵ0 and find an R-name for a filter K̇ ⊂M ∩Q generic over M , and let ν be
the R-name for the evaluation σ/K̇; this is a name for an element of the space
Y .

Claim 5.2.7. ν Ē σ.

Proof. If G0 × G1 ⊂ (Q � q) × R is a generic filter over V , in some further
generic extension there is a filter G2 ⊂ Q ∩ M generic over V [G0, G1]. As
σ is an E-pinned name, the forcing theorem applied in the model M shows
that M [G0, G2] |= σ/G0 F σ/G2 and M [K̇/G1, G2] |= σ/K̇/G1 F σ/G2. The
transitivity of E and the Mostowski absoluteness for the models just mentioned
then shows that σ/G0 is F -related to ν/G1 = σ/K/G1.

Now by the definition of σ, σ Ē τ and so ν Ē τ as desired.

Corollary 5.2.8. If E is an orbit equivalence relation and P is an ℵ1-preserving
poset, then every E-pinned name on P is trivial.
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Proof. Let τ be an E-pinned name. Since P preserves ℵ1, the cardinal κ(τ) must
be equal to ℵ0. Thus, Coll(ω, ω) must contain an E-pinned name Ē-related to
τ . However, Coll(ω, ω) is just the Cohen forcing, therefore reasonable, and so
all E-pinned names in it are trivial by Theorem 3.3.2.

Theorem 5.2.9. The class of cardinalistic equivalence relations contains all
pinned equivalence relations. It is closed under

1. the Friedman–Stanley jump;

2. product modulo every Borel ideal J on ω such that =J is pinned.

In order to efficiently package the proof of Theorem 5.2.9, I will use a tech-
nical Lemma similar to Lemma 4.3.3.

Lemma 5.2.10. Suppose that τ is an E-pinned name on a poset P and κ is
an infinite cardinal. The following are equivalent:

1. κ = κ(τ);

2. in every forcing extension V [G] of V , |κ| = ℵ0 iff there is x ∈ X such that
P 
 τ E x̌.

Proof. First assume (1). To verify (2), suppose that Q is any poset. If some
condition q ∈ Q forces that κ is countable, then there is a name σ on Q � q such
that 〈P, τ〉 〈 Q � q, σ〉 by (1). Then, q 
 P 
 τ E σ by the forcing theorem. On
the other hand, if some condition q ∈ Q forces that there is x ∈ X such that
P 
 τ E x̌ and σ is a Q-name for such an x, then 〈P, τ〉 Ē 〈Q � q, σ〉 by the
product forcing theorem. By (1), q must force |κ| = ℵ0. This verifies (2).

Now, assume (2). To verify (1), suppose that Q is a poset. If Q 
 |κ| = ℵ0
then by (2) Q 
 ∃x P 
 τ E x̌. If σ is a Q-name for any such a point x ∈ X,
then the product forcing theorem shows that P ×Q 
 τ E σ and so τ Ē σ. On
the other hand, if some condition q ∈ Q forces κ to remain uncountable, then
by (2) it also forces that there is no x ∈ X such that P 
 τ E x̌, which excludes
the existence of a Q-name σ such that 〈P, τ〉 Ē 〈Q, σ〉.

Proof of Theorem 5.2.9. For (1), suppose that E is a cardinalistic equivalence
relation on a Polish space X and τ is an E+-pinned name for an element of Xω

on some poset P . Let A = {〈P � p, τ(i)〉 : p ∈ P, i ∈ ω and τ(i) is an E-pinned
name on the poset P � p}. Let λ be the number of Ē-classes represented in the
set A and let κ = sup{λ, κ(z) : z ∈ A}. Since E is assumed to be a cardinalistic
equivalence relation, κ is well-defined. I claim that κ = κ(τ) works. Suppose
that V [G] is a generic extension of V and work in V [G]; I must verify the
equivalence in (1) of Lemma 5.2.10.

Suppose first that there is y ∈ Xω such that P 
 τ E+ y̌. Then for each
Ē-class c represented by z = 〈P � p, τ(i)〉 ∈ A, the countable set rng(y) must
contain an element xc ∈ X such that p 
 τ(i) E x̌c. As for distinct Ē-classes c
the elements xc must be non-E-related and therefore distinct, it follows that λ
must be countable in V [G]. Also, Lemma 5.2.10 applied to E and xc shows that
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the cardinal κ(z) must be countable in V [G], this for every z ∈ A. It follows
that κ is countable in V [G] as required.

Suppose now that κ is countable in V [G]. Applying Lemma 5.2.10 to E, for
every pair z = 〈P � p, τ(i)〉 ∈ A there is xz ∈ X in V [G] such that p 
 τ(i) E x̌z.
Since the number of Ē-classes represented in the set A is countable in V [G], the
set {xz : z ∈ A} contains only countably many E-classes. Let y ∈ Xω be some
point in V [G] visiting exactly these classes. I claim that P 
 τ E+ y̌ as desired.,

First of all, it is clear that P 
 ∀i∃j y̌(i) E τ(j), since for every i ∈ ω there
is j ∈ ω and p ∈ P such that p 
 y̌(i) E τ(j) by the choice of y, and the name
τ is E+-pinned. To prove that P 
 ∀i∃j y̌(j) E τ(i), suppose for contradiction
that it fails as forced by some condition p ∈ P and a specific number i ∈ ω. As
the name τ is E+-pinned, there must exist conditions p0, p1 ≤ p and a number
k ∈ ω such that 〈p0, p1〉 
P×P τleft(i) E τright(k). Then, τ(i) is an E-pinned
name on P � p0, and so 〈P � p, τ(i)〉 ∈ A. By the choice of the point y ∈ Xω,
there is j ∈ ω such that P � p 
 τ(i) E y̌(j), contradicting the choice of the
condition p and the number i.

For (2), suppose that J is a Borel ideal on ω such that =J is pinned, and
for every i ∈ ω, Ei is a cardinalistic equivalence relation on a Polish space Xi,
X =

∏
iXi and E =

∏
J Ei. Suppose that P is a poset and τ is an E-pinned P -

name for an element of X. Consider the following P -names. For each i ∈ ω \ a,
if there is a condition p in the generic filter such that τi is an Ei-pinned name
on P � p, then κi = κ(τi). Also, let κ be the least cardinal such that the set
{i ∈ ω : κi > κ} is in J .

Claim 5.2.11. P 
 {i ∈ ω : κi is not defined} ∈ J .

Proof. Suppose there is a condition p ∈ P forcing the opposite. Since τ is
a E-pinned name, there must be conditions p0, p1 ≤ p and i ∈ ω such that
〈p0, p1〉 
 τi,left Ei τi,right and p0 
 κi is not defined. However, this is impossible
since τi is an Ei-pinned name on P � p0 and Ei is cardinalistic.

Claim 5.2.12. The value of κ is decided by the largest condition in P .

Proof. Suppose for contradiction that p0, p1 are conditions in P that decide the
value of κ̇ to be the respective distinct values λ0, λ1, say λ0 < λ1. Since E is
an E-pinned name, strengthening the conditions p,p1 if necessary I may find
an index i ∈ ω such that 〈p0, p1〉 
 τi,left Ei τi,right and p0 
 κi ≤ λ1 and
p1 
 κi > λ1. Strengthening further if necessary, I can make sure that p0, p1
decide the value of κi. This contradicts the fact that κi is an invariant of the
Ē-equivalence.

Now, I will show that κ = κ(τ) works as required. Suppose that V [G]
is a generic extension and work in V [G]; I must verify the equivalence in
Lemma 5.2.10(2). If |κ| = ℵ0 then by the definition of κ and Lemma 5.2.10
applied to Ei, P 
 τ(i) is Ei-equivalent to some element of V [G] for all but
J-many numbers i ∈ ω. For each i ∈ ω let fi : 2ω → Xi/Ei be any enumeration
of all Ei-classes and let ν be the P -name for an element of (2ω)ω given by the
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following formula: if τ(i) is Ei-equivalent to some element of V [G] then ν(i)
is the unique y ∈ 2ω such that τ(i) is Ei-equivalent to the elements of fi(y),
and ν(i) =trash otherwise. The definitions show that this is a =J -pinned name
on P . Since the equivalence relation =J is pinned in V by the assumptions, it
is pinned in V [G] as well by Corollary 3.2.6, and so the =J -pinned name ν is
trivial, forced to be =J -equivalent to some element z ∈ (2ω)ω. Let x ∈ X be
any point such that for every i ∈ ω, x(i) ∈ fi(z(i)). It follows directly from
definitions that P 
 τ E x̌.

If, on the other hand, there is an element y ∈ X such that P 
 τ E y̌,
then for al but J-many i ∈ ω, the equivalence class [τ(i)]Ei is V -Ei-pinned. By
the minimal choice of κ, it also must be the case that the cardinals κ([y(i)]Ei)
are cofinal in κ or perhaps include κ. These cardinals are all countable by
Lemma 5.2.10 applied to Ei, so κ must be countable as well.

5.3 An ergodicity result

In this section, I will isolate a simple Borel equivalence relation which is not
cardinalistic in some forcing extension. This equivalence relation then possesses
a strong ergodicity property with respect to all provably cardinalistic relations,
in particular all orbit equivalence relations.

Definition 5.3.1. The mutual domination Borel equivalence relation E on
X = (ωω)ω connects points x, y ∈ X if for every n ∈ ω there is m ∈ ω such
that y(m) modulo finite dominates x(n) and vice versa, for every n ∈ ω there
is m ∈ ω such that x(m) modulo finite dominates y(n).

To state the ergodicity result, I must first identify a suitable σ-ideal on the space
X.

Definition 5.3.2. Let A ⊂ X be a set. The game G(A) is played by Players
I and II alternately choosing points yn ∈ ωω for n ∈ ω so that yn+1 modulo
finite dominates yn for every n ∈ ω. Player I wins if there is x ∈ A such that
〈yn : n ∈ ω〉 E x. The mutual domination ideal is the σ-ideal generated by
sets X \ [A]E where A ⊂ X is an analytic set such that Player I has a winning
strategy in G(A).

The purpose of this section is to prove the following theorem:

Theorem 5.3.3. Let E be the mutual domination equivalence relation on a
Polish space X.

1. κ(E) = c+;

2. in some generic extension, E is not cardinalistic;

3. If F is an analytic equivalence relation on a Polish space Y which is car-
dinalistic in every forcing extension and h : X → Y is a Borel homomor-
phism from E to F , then there is an y ∈ Y such that X \ h−1[y] belongs
to the mutual domination ideal.
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Corollary 5.3.4. If F is an orbit equivalence relation of a Polish group action
on a Polish space Y , if h : X → Y is a Borel homomorphism from E to F , then
there is an y ∈ Y such that X \ h−1[y] belongs to the mutual domination ideal.

Before the proof of Theorem 5.3.3, I will spend some time outlining the main
features of the mutual domination ideal. It turns out that it is closely related
to the σ-ideal naturally associated with ω-iteration of Hechler forcing.

Definition 5.3.5. [2, Definition 3.1.9] The Hechler forcing is the poset P con-
sisting of pairs p = 〈tp, xp〉 where tp ∈ ω<ω and xp ∈ ωω. The ordering is defined
by q ≤ p if tp ⊂ tq, xp ≤ xq coordinatewise, and ∀n ∈ dom(tq)\dom(tp) tq(n) ≥
xq(n). The poset P adds a Hechler real, which is the point ẋgen =

⋃
p∈G tp ∈ ωω

whenever G ⊂ P is a generic filter.

The letter P in this section always denotes the Hechler forcing. P is one
of the most frequently used Suslin forcings. The Hechler real ẋgen modulo
finite dominates all functions in the ground model. It can also modulo finite
dominate any function which is not in the ground model. This is the contents
of the following technical lemma, which I will use repeatedly:

Lemma 5.3.6. Suppose that M is a countable transitive model, p ∈ PM , and
y ∈ ωω is an arbitrary function. Then there is a filter g ⊂ PM generic over M
such that p ∈ g and ẋgen/g modulo finite dominates y.

Proof. Let N be a countable elementary submodel of a large structure con-
taining all the named objects. Let p = 〈tp, xp〉, let q ≤ p be the condition
q = 〈tp,max(xp, y), let h be a Hechler generic filter over N containing h, and
let g = h ∩ PM . By Theorem 2.3.9, g is PM -generic over M , it contains the
condition p, and by the choice of the condition q, ẋgen/g(n) > y(n) for all
n > dom(tp). This completes the proof.

Definition 5.3.7. The ω-Hechler ideal on the space X is the collection of those
Borel sets B such that Pω 
 ~xgen /∈ Ḃ. Here, Pω is the usual c.c.c. finite support
iteration of length ω of Hechler forcing and ~xgen ∈ (ωω)ω its generic sequence.

On the collection of E-saturated subsets of the space X, the ω-Hechler ideal
has a forcing free description coming from a natural infinite game.

Theorem 5.3.8. For every analytic set A ⊂ X, the game G(A) is determined.
If A ⊂ X is an analytic set then ωω \ [A]E is in the ω-Hechler ideal if and only
if it is in the mutual domination ideal.

Proof. For the determinacy, if A ⊂ X is an analytic set, fix a continuous function
f : ωω → X such that rng(f) = [A]E . Let H be the unraveled version of the
game G(A): with each move y2n of the game G(A) Player I indicates a number
mn ∈ ω, and he wins if f(mn : n ∈ ω) = (y2n : n ∈ ω). The game H is closed
for Player I, therefore determined by the Gales-Stewart theorem. If Player I
has a winning strategy in H, the same strategy without revealing the additional
numbers will win for Player I in G(A). It will be enough to show that if Player
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II has a winning strategy in H then he has a winning strategy in the game G(A)
as well.

Indeed, if σ is a winning strategy for Player II in the game H(A), he can
transform it to a winning strategy τ in the game G(A). Just let τ answer a
given finite sequence of moves of player I in G(A) with a function in ωω that
modulo finite dominates all answers the strategy σ can give to the same sequence
enriched with some choices of natural numbers in H(A). Since there are only
countably many natural numbers, this is possible. Such a strategy τ must be
winning for Player II. Indeed, if 〈yn : n ∈ ω〉 is any counterplay against τ
that Player I won, then there would have to be an element z ∈ ωω such that
f(z) = 〈y2n : n ∈ ω〉, and then Player I would also win against the strategy σ
with the moves y2n : n ∈ ω and z(n) : n ∈ ω.

For the comparison between the ω-Hechler ideal and the mutual domina-
tion ideal, assume first that A ⊂ X is an analytic set and ωω \ [A]E is in
the mutual domination ideal. I must show that Pω 
 ẋgen ∈ [A]E . Sup-
pose for contradiction that p ∈ Pω is a condition forcing the opposite. Let
M be a countable elementary submodel of a large enough structure contain-
ing p. I will construct a filter g ⊂ Pω generic over M such that p ∈ g and
ẋgen/g ∈ [A]E . By the Mostowski absoluteness for the model M [g], this means
that M [g] |= ẋgen/g ∈ [A]E , contradicting the forcing theorem.

For the construction of the filter g, let σ be a winning strategy for Player I
in the game G(A), let 〈Dn : n ∈ ω〉 enumerate all open dense subsets of Pω in
the model M , and by induction on n ∈ ω build filters gn ⊂ P and conditions
qn ∈ Pω ∩M such that:

• writing Mn = M [gi : i ∈ n], the filter gn ⊂ PMn is P -generic over Mn;

• p = q0 ≥ q1 ≥ . . . are conditions in Pω ∩M such that qn+1 ∈ Dn and
pn � n ∈ g0 ∗ g1 ∗ · · · ∗ gn−1;

• writing xn for the n-th Hechler real, g(xn) modulo finite dominates the
function σ(xi : i ∈ n).

This is not difficult to do. Given pn and gi : i ∈ n, use Lemma 5.3.6 to find
a filter gn ⊂ PMn generic over Mn such that pn(n) ∈ gn and its generic real
dominates the function σ(xi : i ∈ n). By the genericity of the filter g0 ∗ · · · ∗ gn
on the iteration of Hechler forcing of length n + 1, there must be a condition
qn+1 ≤ qn in the model M such that q � n+ 1 ∈ g0 ∗ · · · ∗ gn and qn+1 ∈ Dn+1.
This completes the induction step.

In the end, the filter generated by the conditions qn for n ∈ ω is Pω-generic
over M , and its generic sequence ~xgen equals to 〈xn : n ∈ ω〉. ~xgen is a legal
counterplay of Player II against the strategy σ by the last item of the induction
hypothesis. As the strategy σ was winning for Player I, ~xgen ∈ [A]E . At the
same time, the forcing theorem applied in the model M shows that M [~xgen ] |=
~xgen /∈ [A]E , and by the Mostowski absoluteness then ~xgen /∈ [A]E holds even
in V , which is a contradiction.
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Proof of Theorem 5.3.3. For (1), to show that κ(E) ≥ c+, let C ⊂ P(ω) be an
almost disjoint family of size continuum and let a ⊂ ωω be the set of character-
istic functions of finite unions of sets in C. Consider the poset Coll(ω, a) and
its name σ for an enumeration of the set a. I will show that σ is not Ē-related
to any name on a poset of size < c. Towards a contradiction, let Q be such a
poset and τ be such a name. Each entry of τ is dominated by a characteristic
function of a finite union of some elements of c, and by the small size of Q there
is c ∈ C which is forced by C not to appear in any of these finite unions. Then
the characteristic function of c is forced to be not dominated by any element of
τ , contradicting the assumption τ Ē σ.

To show that κ(E) ≤ c+, suppose that σ is a pinned name on some poset
P . Let a = {z ∈ ωω : ∃p p 
 ∃n ž is modulo finite dominated by σ(n)}. Since
the name σ is pinned, we have that in fact a = {z ∈ ωω : P 
 ∃n ž is modulo
finite dominated by σ(n)}. We will show that the name σ is Ē-equivalent to
any Coll(ω, a)-name τ for a generic enumeration of the set a.

It is enough to show that P 
 ∀n ∃z ∈ a σ(n) is modulo finite dominated
by z. Suppose for contradiction that p ∈ P is a condition and n ∈ ω is a
number such that p 
 σ(n) is not modulo finite dominated by any function in
a. Use the pinned condition to find m, l ∈ ω and q ∈ P and strengthen p if
necessary so that 〈p, q〉 
 ∀k > l σleft(n)(k) ≤ σright(m)(k). Let z ∈ ωω be a
function that assigns to each k ∈ ω the maximal number h ∈ ω such that there
is p′ ≤ p forcing σ(n)(k) = h if such number exists. Note that for all k > l, such
number must exist as otherwise it would be possible to find p′, q′ ≤ 〈p, q〉 such
that 〈p′, q′〉 
 σleft(n)(k) > σright(m)(k). Now, z /∈ a since p forces σ(n) to be
modulo finite dominated by z. This means that q 
 σ(m) does not dominate ž
modulo finite and so there is q′ ≤ q and k > l such that q′ 
 σ(m)(k) < z(k).
Find p′ ≤ p forcing σ(n)(k) = ž(k); then 〈p′, q′〉 
 σleft(n)(k) > σright(m)(k),
contradicting the assumed properties of 〈p, q〉.

For (2), let V [G] be some forcing extension in which there is a modulo finite
increasing sequence z = 〈zα : α ∈ ω2〉 of elements of ωω. Work in V [G]. Let R
be the Namba forcing, adding a cofinal sequence f : ω → ωV2 and let τ be the
R-name for the composition z ◦ f . The following three items show complete the
proof of (2):

• The name τ is E-pinned. For any two functions f, g : ω → ω2 with cofinal
rangle, the compositions z ◦ f and z ◦ g are E-related.

• The name τ is E-nontrivial. If R 
 τ E x̌ for some x ∈ X, then the
function g : ω → ω2 given by g(n) =the least α ∈ ω2 such that zα modulo
finite dominates x(n) would have to have cofinal range in ω2.

• κ(τ) does not exist. The poset R preserves ℵ1, so the only option for κ(τ)
is ℵ0. However, Coll(ω, ω) is just Cohen forcing, all of its pinned names
are trivial by Theorem 3.3.2, and so none of them can be equivalent to
the E-nontrivial name τ .

For (3), consider the poset P = Pω2
∗ Ṙ, where Pω2

is the finite support
iteration of Hechler forcing of length ω2, adding a sequence z ∈ (ωω)ω2 , and
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Ṙ is the Namba forcing, adding an increasing cofinal function f : ω → ω2.
Consider the P -name τ for the element of X defined as τ = z ◦ f . Consider also
the name h(τ) for an element of Y .

First, move to the Pω2 extension. The remainder of the name τ is an E-
pinned Ṙ-name by (2); the E-equivalence class of τ does not depend on the
particular cofinal function from ω to ω2 as the points on the sequence z are
modulo finite increasing. As h remains a homomorphism, the remainder of the
name h(τ) must be an F -pinned name. Now, Ṙ preserves ℵ1 and F is still
a cardinalistic equivalence, it follows that κ(remainder of h(τ)) = ℵ0; in other
words, the remainder of h(τ) is a trivial F -pinned name, whose equivalence class
is represented by some element of Y in the Pω2-extension. Let ẏ be some Pω2

name for this element.

Back to the ground model. I will argue that ẏ is an F -pinned name in
the poset Pω2 . First, use the c.c.c. of the poset to find an ordinal α ∈ ω2

such that ẏ is in fact a Pα-name. Suppose for contradiction that Pα × Pα 

ẏleft F ẏright fails. Then, obtain filters G0 × G1 ⊂ Pα × Pα generic over V
such that ẏ/G0 F ẏ/G1. Write z0, z1 ∈ (ωω)α for the sequences of Hechler
reals added by G0 and G1 respectively. Find a filter H ⊂ Pω2\α generic over

V [G0, G1] and write z2 ∈ (ωω)ω2\α for its sequence of Hechler reals. Since
the iteration Pω2\α is a finite support iteration of Suslin forcings, z2 is in fact
V [G0]-generic for that iteration as evaluated in the model V [G0], and similarly

for V [G1] by Theorem 2.3.9. Thus, the sequences za0 z2 and za1 z2 are both
V -generic for Pω2 . If f0, f1 : ω → ω2 are Namba-generic sequences over the
models V [z0, z2] and V [z1, z2] respectively with minimal value greater than α,
then the points z2 ◦ f0, z2 ◦ f1 ∈ X are E-related. As h is a homomorphism, the
points h(z2 ◦ f0), h(z2 ◦ f1) ∈ Y are F -related. By the forcing theorem applied
in the respective models V [z0, z2] and V [z1, z2] though, the former is F -related
to ẏ/z0 and the latter is F -related to ẏ/z1, which are non-F -related points, a
contradiction.

Since the poset Pω2
is c.c.c., all F -pinned names in it must be trivial by

Theorem 3.3.2. In particular, there is an element y0 ∈ Y such that Pω2

 ẏ F y̌0.

Together with the choice of the name ẏ, this gives Pω2
∗ Ṙ 
 h(τ) F y̌0. Write

A = h−1[y0]F ; this is an analytic E-invariant set. I will prove that X \A ∈ I.

Suppose for contradiction that it is not, and so Player II has a winning
strategy σ in the game G(A). Let M be a countable elementary submodel of
a large enough structure, let 〈αn : n ∈ ω〉 be an increasing sequence cofinal in
ω2 ∩M with α0 = 0, and by induction on n ∈ ω build sequences 〈zα : αn ≤ α <
αn+1〉 so that

• 〈zα : αn ≤ α < αn+1〉 is a sequence generic over the model Mn = M [zα :
α ∈ gan] for the poset Sn which is the finite support iteration of Hechler
forcing along the interval [αn, αn+1).

• the point zαn modulo finite dominates the response of the strategy σ to
the moves zαi : i ∈ n.



5.3. AN ERGODICITY RESULT 63

The induction step is performed easily with the help of Lemma 5.3.6 applied to
the model Mn. In th end, consider the sequence 〈zα : α ∈ ωM2 〉. Observe that
it is generic over the model M for the finite iteration S of the Hechler forcing
of length ωM2 . To see this, note that S is a c.c.c. poset in M , therefore every
maximal antichain A ∈ M of S is already a subset of S0 ∗ S1 ∗ · · · ∗ Sn, and
as such is met by the filter g0 ∗ g1 ∗ · · · ∗ gn ⊂ S0 ∗ S1 . . . Sn, which is generic
over M and a subset of g. Let 〈βn : n ∈ ω〉 be a Namba-generic sequence over
the model M . The sequences 〈zβn : n ∈ ω〉 and 〈zαn : n ∈ ω〉 are E-related.
Now, the sequence 〈zαi : i ∈ ω〉 is a valid counterplay of Player I to the strategy
σ. As σ was a winning strategy for Player II, Player I must have lost, and so
〈zαn : n ∈ ω〉 /∈ A. On the other hand, the sequence 〈zβn : n ∈ ω〉 belongs to A
by the forcing theorem applied in the model M . This contradicts the fact that
the set A is E-invariant.

The position of the mutual domination equivalence relation among the other
analytic equivalence relations is unclear at this point. I include the following
result:

Theorem 5.3.9. (Kechris, Macdonald) EKσ is Borel reducible to the mutual
domination equivalence relation.

Proof. Write E for the mutual domination equivalence, with dom(E) = (ωω)ω =
X. Let m 7→ (m0,m1) be a bijection between ω and ω × ω. Let h : ωω → X
be the Borel function defined by h(y)(n)(m) = 1 if y(m0) + n > m1, and
h(y)(n)(m) = 0 otherwise. I claim that this is a reduction of EKσ to E.

Indeed, if y, z ∈ ωω are EKσ -equivalent, then there is a number n′ such that
y+n′ at all entries dominates the function z and z+n′ at all entries dominates
the function y. For every number n ∈ ω then, h(y)(n + n′) dominates h(z)(n)
and h(z)(n + n′) dominates h(y), and therefore h(y) E h(z). On the other
hand, if y, z ∈ ωω are not EKσ -equivalent, then either there is no n such that
y + n dominates z, or there is no n such that z + n dominates y. Suppose for
definiteness that the former is the case, and observe that h(z)(0) is not modulo
finite dominated by any h(y)(n) for any n ∈ ω.
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Chapter 6

Trim equivalence relations

6.1 Turbulence revisited

In this chapter, I will introduce a class of analytic equivalence relations some-
what reminiscent of pinned relations. It is nevertheless more useful fo obtaining
ergodicity results among very simple equivalence relations. To motivate the def-
initions, I will prove a restatement of Hjorth’s concept of turbulence in terms
of models of set theory. Recall:

Definition 6.1.1. [12, Section 13.1] Let G y X be a continuous Polish group
action on a Polish space.

1. If U ⊂ G,O ⊂ X are sets and x ∈ O then U,O-orbit of x is the set
{y ∈ O : there are points {gi : i ∈ n} in U and {xi : i ∈ n+ 1} in O such
that x0 = x, xn = y and xi+1 = gi · xi.

2. The action is turbulent at x ∈ X if for all open sets U ⊂ G and O ⊂ X
with 1 ∈ U and x ∈ O the U,O-orbit of X is somewhere dense.

3. The action is generically turbulent if its orbits are meager and dense and
the set of points of turbulence is comeager.

To restate turbulence in forcing terms, recall the poset PX consisting of all
nonempty open subsets of X ordered by inclusion–Definition 2.2.1. Write ẋgen
for the PX -name for the unique point in all sets in the PX -generic filter. It is
clear that PX is in the forcing sense isomorphic to Cohen forcing. A point x ∈ X
is PX -generic over the ground model if and only if it belongs to all open dense
subsets of X coded in the ground model. I will use this poset in the following
situation. Let Gy X be a continuous Polish group action, consider the product
PG × PX and its associated names ġgen and ẋgen for generic elements of G and
X. By the usual Kuratowski–Ulam argument, a pair 〈g, x〉 is PG × PX -generic
over the ground model if and only if it belongs to every open dense subset of
G × X coded in the ground model. In the generic extension, the group G as

65
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well as the space X and the action can be reinterpreted using the standard
absoluteness arguments.

Theorem 6.1.2. Let G y X be a continous Polish group action whose orbits
are meager and dense. The following are equivalent:

1. the action is generically turbulent;

2. PG × PX forces V [ẋgen ] ∩ V [ġgen · ẋgen ] = V .

3. PG × PX forces 2ω ∩ V [ẋgen ] ∩ V [ġgen · ẋgen ] = 2ω ∩ V .

Thus, if the action is generically turbulent, then the poset PG × PX adds two
points x0 = ẋgen , x1 = ġgen · ẋgen ∈ X such that x0 E x1 (as one of them
is obtained by an application of the generic group element from the other),
V [x0]∩V [x1] = V (that is the contents of the theorem), and x0 is not E-related
to any ground model point of X (as the orbits are meager and x0, being Cohen-
generic over V , does not belong to any ground model coded meager subset of
X). It will turn out later that this fine task is impossible to perform for many
equivalence relations E which do not come from turbulent actions, and this will
lead to a number of new ergodicity results.

Proof of Theorem 6.1.2. I first need to evaluate the genericity of the point ġgen ·
ẋgen ∈ X. This is the contents of the following easy claim.

Claim 6.1.3. PG × PX forces the following.

1. ġgen · ẋgen is PX-generic over the ground model;

2. if h, k ∈ G are ground model elements of the group then 〈ġgenh, k · ẋgen〉
is PG × PX-generic pair over the ground model.

Proof. For (1), let D ⊂ X be an open dense set, and consider the set C =
{〈g, x〉 ∈ G ×X : g · x ∈ D}. It is not difficult to see that C is open dense in
G×X. Thus, PG × PX forces the generic pair 〈ġgen, ẋgen〉 to belong to the set
C, and consequently the point ġgen · ẋgen to belong to D. As D ⊂ X was an
arbitrary open dense set, (1) follows.

For (2), consider the maps U 7→ Uh for U ∈ PG and O 7→ kO for U ∈ PX .
These are automorphisms of PG and PX respectively, and so carry generic filters
to generic filters. (2) follows immediately.

I will also need the following well-known complexity calculation.

Claim 6.1.4. The set B = {x ∈ X : the action is not turbulent at x} ⊂ X is
Borel.

Proof. Let H ⊂ G be a countable dense subgroup, and choose also a countable
basis both for the topology of X and G. By the continuity of the group action,
a point x ∈ X is in B iff there are basic open sets O ⊂ X and U ⊂ G containing
x and 1G respectively such that the countable U ∩ H,O-orbit of x is nowhere
dense. This is easily checked to be a Borel condition.
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For the implication (1)→(2), suppose that (1) holds. Thus, the Borel set of
all turbulent points in X is comeager and so PX 
 the action is turbulent at
ẋgen . To confirm (2), suppose that q ∈ PG and p ∈ PX are conditions τ, σ are
PX -names for sets of ordinals such that 〈q, p〉 
PG×PX τ/ġgen · ẋgen = σ/ẋgen .
I will find a condition p′ ≤ p which decides the membership of every ordinal in
σ. An obvious density argument then confirms (2). Let q′ ≤ q be a condition
and U ⊂ G be an open neighborhood of 1G such that q′ · U−1 ⊂ q. Write also
O = p and Ũ for the set of ground model elements of U in the PX -extension.

Claim 6.1.5. The condition p forces the following in PX :

1. if h ∈ U is a ground model element such that h · ẋgen ∈ p, then σ/ẋgen =
σ/h · ẋgen ;

2. the evaluation σ/y is the same for every point y ∈ X on the Ũ , O-orbit of
ẋgen .

Proof. Let x ∈ X be a PX -generic point over V , in p. For (1), let h ∈ U be a
ground model element such that h ·x ∈ p. To compare σ/x and σ/h ·x, let g be
a PG-generic element over V [G], in q′. By the product forcing theorem, the pair
〈g, x〉 is PG×PX -generic over V . The pair 〈gh−1, h · x〉 is also PG×PX -generic
over V by Claim 6.1.3(2). Both pairs meet the condition 〈q, p〉. Thus, by the
forcing theorem applied to these two pairs, σ/x = τ/g · x = τ/(gh−1 · h · x) =
σ/h · x. This completes the proof of (1).

(2) now follows from (1) applied repeatedly at each step of the walk leading
from x to y. Note that all points on the Ũ , O orbit are PX -generic over the
ground model.

Now, let x ∈ X be a PX -generic point over V . Since the point x is turbulent
for the action by (1), the U,O-orbit of x is dense in some basic open set p′ ≤ p.
I claim that the condition p′ ≤ p decides the membership of every ordinal in σ
as required. Indeed, suppose that α is an ordinal and p′0, p

′
1 ≤ p′ are conditions

deciding the statement α̌ ∈ σ in different ways. The U,O-orbit of x is dense in
p′, so it visits both sets p′0, p

′
1. Since the group action is continuous and Ũ ⊂ U

is dense, the Ũ , O-orbit of x is dense in the U,O-orbit of x and so it also visits
the sets p′0, p

′
1 in respective points y0, y1. These points are PX -generic over V

and σ/y0 = σ/y1 by Claim 6.1.5(2). By the forcing theorem though, the sets
σ/y0, σ/y1 should differ in the membership of the ordinal α. This contradiction
completes the proof of (2).

(2) implies (3) is trivial. To show that (3) implies (1), suppose that (1)
fails. Then, the Borel set B of nonturbulent points is not meager, and so some
condition p ∈ PX forces ẋgen ∈ Ḃ. Strengthening the condition p if necessary, I
can also find open sets U ⊂ G and O ⊂ X such that 1G ∈ U , p ⊂ O, and p 
 the
U,O-orbit of ẋgen is nowhere dense. Strengthening p further if necessary, I can
find a basic open set q ⊂ U such that q−1 ⊂ U and q · p ⊂ O. I claim that 〈q, p〉
in the poset PG×PX forces 2ω ∩V [ẋgen ]∩V [ġgen · ẋgen ] 6= 2ω ∩V , violating (3).

Let Ḋ be the name for the set of all basic open sets disjoint from the U,O-local
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orbit of ẋgen ; I will show that 〈p, q〉 forces Ḋ ∈ V [ẋgen ] ∩ V [ġgen · ẋgen ] and

Ḋ /∈ V . This violates (3) as D can be easily coded as an element of 2ω. Indeed,
the conditions p, q are chosen so that the U,O-orbits of ẋgen and ġgen · ẋgen are
the same, as each of the two points is on the U,O-orbit of the other; thus, the
set D belongs to both V [ẋgen ] and V [ġgen · ẋgen ]. To see that Ḋ /∈ V , note that
the U,O-orbit of ẋgen is nowhere dense, so

⋃
D is open dense, and it does not

contain the point ẋgen . This would be impossible if D ∈ V as ẋgen is forced to
belong to all open dense subsets of X coded in the ground model. In conclusion,
the failure of (1) implies the failure of (3).

The forcing restatement of turbulence can be used to provide a conceptual
and short proof of every consequence of turbulence known so far. Here, I will
illustrate it on a theorem of Hjorth that equates turbulence with generic F2-
ergodicity.

Theorem 6.1.6. Let G y X be a continuous action of a Polish group on a
Polish space with dense meager orbits. Let E be the resulting orbit equivalence
relation on X. Then, the following are equivalent:

1. the action is generically turbulent;

2. E is generically F2-ergodic.

Here, E is generically F2-ergodic if for every Borel homomorphism h of E to
F2, there is a single F2-class with a comeager h-preimage.

Proof. Now, the implication (1)→(2) was proved by Hjorth [13, Theorem 12.5]
and follows from Theorem 7.1.1 below. To prove the opposite implication, I will
first construct a certain critical Borel homomorphism of E to F2. Let M be a
countable elementary submodel of a large structure containing the condition p
and let B ⊂ X be the set of all PX -generic points over M . Let h̄ : B → [2ω]ℵ0

be the map defined by h̄(x) = {y ∈ 2ω ∩M [x] : PG 
 y̌ ∈ M [ġgen · x]}. I will
show that this is a homomorphism of E to F2 in the sense that if x0, x1 ∈ B are
E-related points then h̄(x0) = h̄(x1). This follows from the next two claims.

Claim 6.1.7. If x ∈ B and y ∈ M [x] ∩ 2ω, then the statement y̌ ∈ M [ġgen · x]
is decided by the largest condition in PG.

Proof. Suppose that this fails and find y ∈M [x]∩2ω and conditions q0, q1 ∈ PG
such that q0 
 y̌ ∈ M [ġgen · x] and q1 
 y̌ /∈ M [ġgen · x]. Strengthening the
conditions q0, q1 if necessary, I may find an element h ∈ M ∩ G such that
hq0 = q1. Let g ∈ G be a point PG-generic over the model M [x] such that
g ∈ q0. Then hg ∈ q1 is also a point PG-generic over the model M [x] and
M [g · x] = M [hg · x] since the points g · x, hg · x ∈ X can be obtained from
each other by acting by the element h or h−1. At the same time, the forcing
theorem applied in M [x] implies that y ∈ M [g · x] and y /∈ M [hg · x], which is
a contradiction.
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Claim 6.1.8. If x0, x1 ∈ B are E-related sets and y ∈M [x0] ∩ 2ω is such that
PG 
 y̌ ∈M [ġgen · x0], then y ∈M [x1] and PG 
 y̌ ∈M [ġgen · x1].

Proof. Let h ∈ G be an element such that h ·x0 = x1. Let N be a countable ele-
mentary submodel of a large structure containing the objects G,X,M, x0, x1, h.
Let g ∈ G be a PG-generic point over the model N . Then, gh ∈ G is a PG-
generic point over the model N as well. Let x2 = gh · x0 = g · x1. By the claim
assumption, y ∈ M [x2]. Since g is generic over the model N which contains y,
and M [x2] ⊂M [x1][g], it follows that y ∈M [x1]. Finally, PG 
 y̌ ∈M [ġgen ·x1]
follows by the forcing theorem and Claim 6.1.7.

Now, by Lemmas 2.4.2 and 2.4.3, find a Borel function h : B → (2ω)ω such
that for every x ∈ B, the value h(x) is an enumeration generic over the model
M [x] of the set h̄(x) ∈ M [x]. The function h is a homomorphism of E to F2

by Claim 6.1.8. Use Lemma 2.1.5 to extend the homomorphism h to the whole
space X and by abuse of notation denote the extension by h as well. I will show
that if (1) fails then every comeager set contains two points with F2-unrelated
h-images, confirming the failure of (2).

First, use the failure of (1) to find a condition p ∈ PX which forces that for
some y ∈ 2ω in the PX -extension, PG 
 y ∈ V [ġgen · ẋgen ]. Let σ be a name
for such an element, by the elementarity of the model M I can require σ ∈ M .
Now, suppose that C ⊂ X is a comeager set. Let N be a countable elementary
submodel of a large structure containing h,M,C and let 〈x0, x1〉 ∈ (C ∩ p)2 be
a PX ×PX -generic pair of points over the model N . I claim that h(x0) F2 h(x1)
fails as desired. To see this, note that 〈x0, x1〉 ∈ C2 is a PX × PX -generic pair
of points over the model M as well. By the product forcing theorem applied in
the model M , σ/x0 /∈M [x1] and σ/x1 /∈M [x0]. Thus, σ/x0 ∈ h̄(x0) \ h̄(1) and
σ/x1 ∈ h̄(x1) \ h̄(x0), in particular h(x0) F2 h(x1) fails.

6.2 Definitions and basic concerns

In this section, I will define the notion of trimness, which is a strengthening
of the pinned property of equivalence relations tailored to provide ergodicity
results for turbulent action orbit equivalence relations.

Definition 6.2.1. Let E be an analytic equivalence relation on a Polish space
X. E is trim if whenever V [G0] and V [G1] are two forcing extensions of the
ground model and x0 ∈ V [G0] and x1 ∈ V [G1] are two E-related points of
the space X, then either V [G0] ∩ V [G1] 6= V , or there is x ∈ V such that
x E x0 E x1.

To see the link between the pinned and trim equivalence relations more
clearly, consider the following definitions:

Definition 6.2.2. Let E be an analytic equivalence relation on a Polish space
X, and let τ0, τ1 be names for an element of X on the respective posets P0, P1.
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1. 〈P0, τ0〉 Ẽ 〈P1, τ1〉 if for every p0 ∈ P0 and p1 ∈ Q1, in some generic
extension there are filters G0 ⊂ P0, G1 ⊂ P1, each generic over V , such
that τ0/G0 E τ1/G1 and V [G0] ∩ V [G1] = V ;

2. the name τ0 is E-trim if 〈P0, τ0〉 Ẽ 〈P0, τ0〉;

3. the name τ0 is E-trivial if P0 
 for some x ∈ X in the ground model,
τ0 E x.

Theorem 6.2.3. Let E be an analytic equivalence relation on a Polish space
X.

1. A name is E-trim if and only if it belongs to the domain of Ẽ;

2. Ẽ is an equivalence relation on trim names;

3. E is trim iff all E-trim names are E-trivial.

Proof. For (1) and (2), it is enough to show that Ẽ is transitive, because it is
clearly symmetric, and every transitive and symmetric relation is an equivalence
relation on its domain.

Thus, suppose that 〈P0, τ0〉 Ẽ 〈P1, τ1〉 Ẽ 〈P2, τ2〉. I must conclude that
〈P0, τ0〉 Ẽ 〈P2, τ2〉. Let p0 ∈ P0 and p2 ∈ P2 be conditions; in some generic
extension, I must produce filters G0 ⊂ P0 and G2 ⊂ P2 separately generic over
V such that p0 ∈ G0, p2 ∈ G2, V [G0]∩V [G2] = V , and τ0/G0 E τ2/G2. Towards
the construction of these filters, use the definition of Ẽ and the assumptions to
conclude that

• P0 
 in some further extension, there is a filter G1 ⊂ P1 generic over
V such that V [G0] ∩ V [G1] = V and τ0/G0 E τ1/G1, where G0 is the
P0-generic filter;

• P1 
 in some further extension, there is a filter G2 ⊂ P2 generic over V
such that p2 ∈ G2 and V [G1]∩ V [G2] = V and τ1/G1 E τ2/G2, where G1

is the P1-generic filter.

Let G0 ⊂ P0 be a filter generic over V with p0 ∈ G0. Use the first item
above to pass to some larger forcing extension V [G0][H0] which contains some
filter G1 ⊂ P1 such that V [G0] ∩ V [G1] = V and τ0/G0 E τ1/G1. Let Q1 be
a poset in V [G1] such that V [G0][H0] = V [G1][H1] for some filter H1 ⊂ Q1

generic over V [G1]. Let Q2 be a poset in V [G1] which forces the existence of a
filter G2 ⊂ R as in the second item above. Let H2 ⊂ Q2 be a filter generic over
the model V [G1][H1] and let G2 ∈ V [G1][H1] be a filter as in the second item
above. I claim that the filters G0, G2 work.

First of all, τ0/G0 E τ1/G1 by the choice of G1, and τ1/G1 E τ2/G2 by
the choice of G2. By the transitivity of the relation E, τ0/G0 E τ2/G2 as
desired. Second, V [G1][H1] ∩ V [G1][H2] = V [G1] by the product forcing the-
orem, Fact 2.2.6. Since G0 ∈ V [G1][H1] and G2 ∈ V [G1][H2], it follows that
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V [G0]∩V [G2] ⊂ V [G1]. Since V [G0]∩V [G1] = V by the choice of G2, it follows
that V [G0] ∩ V [G2] = V and (1) has been verified.

For the left-to-right implication of (3), if τ is a nontrivial trim name on a
poset P , then by the definition of a trim name and (1), in some generic extension
there are filters G0 ⊂ P,G1 ⊂ P , each generic over V , such that τ/G0 E τ/G1

and V [G0] ∩ V [G1] = V . Since the name τ is nontrivial, the class [τ/G0]E is
not represented in the ground model. This shows that E is not trim.

The right-to-left implication of (3) is more difficult. Suppose that E is not
trim; we must produce a nontrivial E-trim name. As E is not trim, there are
posets P0, P1, Q, Q-names Ġ0, Ġ1 for filters on P̌0, P̌1 generic over V , and a P0-
name τ0 and a P1-name τ1 such that R 
 τ0/Ġ0 E τ1/Ġ1, V [Ġ0] ∩ V [Ġ1] = V ,
and the class [τ0/Ġ0]E is not represented in V . I will find conditions p0 ∈ P0

and p1 ∈ P1 such that 〈P0 � p0, τ0〉 Ẽ 〈P1 � p1, τ1〉; this will complete the proof.
Let H ⊂ Q be a filter generic over V , G0 ⊂ P0 and G1 ⊂ P1 the associated

filters generic over V in the model V [H], and write x0 = τ0/G0 and x1 = τ1/G1.
In particular, V [G0] ∩ V [G1] = V and x0 E x1. Let κ be a cardinal larger than
|Q|, and in the respective models V [G0] and V [G1] define the sets A0 = {p ∈
P1 : Coll(ω, κ) 
 ∃h ⊂ P1 h is generic over V , p ∈ h, and x0 E τ/h} and
A1 = {p ∈ P1 : Coll(ω, κ) 
 ∃h ⊂ P1 h is generic over V , p ∈ h, and x1 E τ/h}.
Both are subsets of P1.

Claim 6.2.4. A0 = A1.

Proof. First, use the homogeneity of Coll(ω, κ) to show that in the definitions of
A0, A1, the Coll(ω, κ) 
 sign can be equivalently replaced with “some condition
in Coll(ω, κ) forces”. Let K ⊂ Coll(ω, κ) be a filter generic over V [H]. By
Fact 2.2.3, the model V [H][K] is a Coll(ω, κ)-extension of both V [G0] and V [G1].
Thus, by the forcing theorem in the models V [G0] and V [G1], in the model
V [H][K] the set A0 is equal to {p ∈ P1 : ∃h ⊂ P1 h is generic over V , p ∈ h,
and x0 E τ/h} and the set A1 is equal to {p ∈ P1 : ∃h ⊂ P1 h is generic over
V , p ∈ h, and x1 E τ/h}. As x0 E x1, these two sets are equal.

Since A0 ∈ V [G0] and A1 ∈ V [G1] and V [G0] ∩ V [G1] = V , it follows
that A0 = A1 ∈ V . By the definition of A1, the set A1 ∈ V contains the filter
G1 ⊃ P1 generic over V ; this means that it has to be dense under some condition
p1 ∈ P1. Let q ∈ Q be some condition deciding the value of A1 and p1 ∈ P1.
Let p0 ∈ P0 be some condition such that every generic filter on P0 containing
p0 can be extended to a generic filter on Q containing q. I claim that back in
the ground model, 〈P0 � p0, τ0〉 Ẽ 〈P1 � p1, τ1〉; this will complete the proof as
the name σ is E-nontrivial by the initial assumptions.

Indeed, suppose that p′0 ≤ p0 and p′1 ≤ p1 are conditions in P0, P1 respec-
tively. By the choice of p0, q, there is a filter H ′ ⊂ Q generic over V containing
q such that the derived filter G′0 ⊂ P0 contains the condition p′0. Let G′1 ⊂ P1

be the derived filter generic over V . The challenge is that the filter G′1 may not
contain the condition p′1.

Let K ⊂ Coll(ω, κ) be a filter generic over V [H ′]. By the definition of the
set A1 in the model V [G′1], in V [G′1][K] there is a filter G′′1 ⊂ P1 generic over V ,
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containing the condition p′1, such that τ1/G
′
1 E τ1/G

′′
1 . Clearly, τ0/G

′
0 E τ1/G

′′
1

by the transitivity of the equivalence relation E. I will show that V [G′0] ∩
V [G′′1 ] = V . Indeed, V [H ′]∩V [G′1][K] ⊂ V [G′1] by the product forcing theorem.
Since G′0 ∈ V [H ′] and G′′1 ∈ V [G′1][K], it follows that V [G′0] ∩ V [G′′1 ] ⊂ V [G′1].
By the initial assumptions, V [G′0]∩V [G′1] = V , so V [G′0]∩V [G′′1 ] = V as desired.

Theorem 6.2.5. If E,F are analytic equivalence relations on Polish spaces
X,Y , E ≤wB F , and F is trim, then E is trim.

Proof. Let f : X → Y be a Borel function which is a reduction of E to F except
on the set [a]E for some countable set a ⊂ X. Let V [G0], V [G1] be two generic
extensions such that V [G0] ∩ V [G1] = V , and let x0, x1 be E-related points
in the respective models V [G0], V [G1]. I must find a ground model element in
their E-equivalence class. If x ∈ [a]E then this is clear, so assume that x /∈ [a]E .

Consider the points y0 = f(x0) ∈ V [G0] ∩ Y and y1 = f(x1) ∈ V [G1] ∩ Y .
These are F -related, as f is a reduction in the model V [G0, G1], and by the
trimness assumption on F there is a ground model point y ∈ Y in their E-
equivalence class. By the Mostowski absoluteness between V and V [G0], there
is a ground model point x ∈ X \ [a]E such that f(x) F y. Since f is a reduction
of E to F outside [a]E , the point x works as required.

6.3 Variations: classes of forcings

The trim concept allows many useful variations.

Definition 6.3.1. Let P be a class of forcing notions closed under restriction
(if P ∈ P then P � p ∈ P for all p ∈ P ). Let E be an analytic equivalence
relation on a Polish space X. Call E P-trim if all E-trim names on posets with
property P are trivial.

A brief perusal of the definition reveals that a more restrictive class of forcing
notions will lead to a larger class of equivalence relations. While a priori any
class P may be useful, I will find use only for proper-trimness. The most
prominent example of an equivalence relation which is proper-trim but not trim
is F2.

The properties of the class of trim equivalence relations proved above re-
main in force for P-trim equivalence relations, with a literal repetition of the
arguments. Thus,

Theorem 6.3.2. 1. An analytic equivalence relation E on a Polish space X
is P-trim iff there are no nontrivial E-trim names on posets with property
P.

2. If E,F are analytic equivalence relations on Polish spaces X,Y , F ≤wB E,
and E is P-trim, then F is P-trim.
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The main result of this section is the following theorem, showing that some
of these a priori interesting variations really boil down to the case of Cohen
forcing.

Theorem 6.3.3. Let E be an analytic equivalence relation on a Polish space
X.

1. E is proper-trim iff E is Cohen-trim;

2. E is trim iff E is pinned and Cohen-trim;

3. if E is Borel reducible to an orbit equivalence relation generated by a con-
tinuous action of a Polish group, then E is ℵ1-preserving trim iff E is
Cohen-trim.

Proof. For (1), since the Cohen forcing is proper, it is clear that every proper-
trim equivalence relation is also Cohen-trim. For the opposite implication, sup-
pose then that E is not proper-trim. Thus, there are posets P,Q,R, R-names
Ġ, Ḣ for filters on P,Q respectively generic over V , and a P -name τ and a
Q-name σ for elements of the space X such that R 
 τ/Ġ E σ/Ḣ, τ/Ġ has
no E-equivalent in the ground model, and P is proper. Standard forcing ma-
nipulations show that I may assume that P,Q are in fact regular subposets of
R and Ġ, Ḣ are R-names for the intersection of the R-generic filter with P,Q
respectively.

Let M be a countable elementary submodel of a large structure containing
all the abovementioned objects, and let R′ = R∩M , P ′ = P ∩M , Q′ = Q∩M ,
τ ′ = τ ∩M and σ′ = σ ∩M . Thus, P ′, Q′ are regular subposets of R′ and
they are in fact independent by Lemma 2.2.9. Also, τ ′, σ′ are P ′, Q′-names for
elements of X, and by the Mostowski absoluteness between the R′-extensions
of M and V , R′ 
 τ ′ E σ′. I must show that τ ′ is a nontrivial name on P ′. The
theorem will then follow as the poset P ′ is countable and therefore in forcing
sense equivalent to Cohen forcing.

Suppose for contradiction that some condition in R′ forces τ ′ E x̌ for some
x ∈ X. Since τ ′ is a P ′-name, there must be a condition p′ ∈ P ′ forcing this.
By the Mostowski absoluteness between the P ′ × P ′ � 〈p′, p′〉-extensions of M
and V , M |= τ ′ is an E-pinned name on P ′ � p′. However, M |= P ′ is proper
by elementarity of the model M , and all E-pinned names on proper posets are
trivial by Theorem 3.3.2. Thus, there is y ∈ M ∩ X such that p′ 
P ′ τ ′ E y̌.
By elementarity of the model M , p′ 
P τ E y̌, and this contradicts the initial
choice of the poset R.

For the left-to-right implication of (2), suppose that E is trim. Then cer-
tainly E is Cohen-trim. Also, every nontrivial E-pinned name is also a nontrivial
E-trim name by the definitions and the product forcing theorem. For the op-
posite implication, suppose that E is pinned, and τ is a nontrivial E-trim name
on some poset P ; I must find a nontrivial E-trim name on the Cohen forcing.
The proof is a literal repetition of the proof of (1), except the consideration
that all E-pinned names on proper posets are trivial is replaced by the pinned
assumption: all E-pinned names are trivial without any restriction on the poset.
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The proof of (3) follows the same lines as (1) with the added piece of infor-
mation that there are no nontrivial E-pinned names on ℵ1-preserving posets if
E is Borel reducible to an orbit equivalence relation, Theorem 5.2.9.

On one hand, Theorem 6.3.3 explains the preoccupation with category-type
ergodicity results observed so frequently in the theory of analytic equivalence
relations. On the other hand, it would be wrong to conclude on the basis of
Theorem 6.3.3 that the only interesting trim names are those on Cohen forcing.
In Section 7.2, I will study trim names on the random forcing and use them to
prove measure theoretic ergodicity results that would be impossible to obtain
otherwise.

6.4 Absoluteness

As it was the case with the pinned equivalence relations, the definition of trim-
ness and its variations seems to take into account large objects in the universe.
Thus, the absoluteness of the trim property between various models of set the-
ory may be questionable. In this section, I will show that at least the basic
variations of trimness are suitably absolute.

Theorem 6.4.1. Let E be an analytic equivalence relation on a Polish space
X. The following are equivalent:

1. E is proper-trim;

2. for every transitive model N of a large part of ZFC containing the code
for E, N |= E is proper-trim.

Proof. Suppose first that E is not proper-trim; then (the transitive collapse
of) any countable elementary submodel of a large enough structure witnesses
the latter statement. For the other direction, suppose that N is a countable
transitive model containing the code for E as an element, and E is not proper-
trim in N . Thus, N contains posets P,Q,R and P -name τ and a Q-name
τ such that P,Q are regular independent subposets of R, P is proper, R 

τ/Ġ ∩ P E σ/Ġ ∩ Q, where Ġ is the usual R-name for the generic filter, and
P 
 τ is not E-related to any element of the ground model. I will show that
the objects P,Q,R, τ, σ maintain these properties even in V , showing that E is
not proper-trim in V .

By Lemma 2.2.9, P,Q are regular independent posets of R. The poset P
is countable in V (as it is a subset of the countable model N) and therefore
proper. The statement R 
 τ/Ġ ∩ P E σ/Ġ ∩Q holds in V by the Mostowski
absoluteness between the R-generic extension of V and N . I still must prove
that the name τ is E-nontrivial. Suppose for contradiction that there is a
condition p ∈ P and a point x ∈ X (possibly not in N) such that p 
 τ E x̌.
By the Mostowski absoluteness between the P × P � 〈p, p〉 extensions of V and
N , it follows that in N , the name τ on P � p is E-pinned. Since the poset P
is proper in N , and there are no nontrivial pinned names on proper posets by
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Theorem 3.3.2, it must be the case that there is y ∈ X in the model N such
that p 
 τ E y̌. This contradicts the nontriviality assumption on the name τ in
the model N .

Corollary 6.4.2. Let E be an analytic equivalence relation on a Polish space
X. The truth value of the statement “E is proper-trim” is the same in all forcing
extensions.

Proof. The second item in Theorem 6.4.1 is equivalent to its version for count-
able models by an immediate downward Löwenheim–Skolem argument. That
version is coanalytic and so absolute between forcing extensions by Mostowski
absoluteness.

For trimness itself, it implies the pinned property of the equivalence relation
in question and so its absoluteness must be spelled out more carefully due to
results of Section 3.2. I have the following:

Theorem 6.4.3. Let E be a Borel equivalence relation on a Polish space X.
The following are equivalent:

1. E is trim;

2. for every ω-model N of a large part of ZFC containing the code for E,
N |= E is trim.

Proof. This is an immediate consequence of Theorems 6.3.3, 6.4.1, and 3.2.1.

Corollary 6.4.4. Let E be a Borel equivalence relation on a Polish space X.
The truth value of the statement “E is trim” is the same in all forcing exten-
sions.

Proof. The second item in Theorem 6.4.3 is equivalent to its version for count-
able models by an immediate downward Löwenheim–Skolem argument. That
version is coanalytic and so absolute between forcing extensions by Mostowski
absoluteness.

6.5 Operations

The collection of trim (or P-trim, for suitable forcing properties P) equiva-
lence relations is closed under a good number of natural operations on analytic
equivalence relations. This is the contents of this section.

Theorem 6.5.1. If {En : n ∈ ω} is a countable collection of (P-) trim ana-
lytic equivalence relations on a Polish space X whose union E =

⋃
nEn is an

equivalence relation, then E is (P-) trim.
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Proof. Let V [G0], V [G1] be two generic extensions such that V [G0]∩V [G1] = V ,
containing respective E-related points x0, x1 ∈ X. I must find a point x ∈ X
in the ground model in the E-equivalence class of x0, x1. Just observe that
there must be a number n ∈ ω such that x0 En x1, and then there must be
x ∈ X in the ground model which is En-related to both x0, x1 by the trimness
assumption on En. Since En ⊂ E, the point x is also E-related to both x0, x1
as required.

Theorem 6.5.2. Whenever C is a countable set, J an analytic ideal on C such
that =2ω

J is (P-)trim, and {Ec : c ∈ C} is a collection of (P-) trim equivalence
relations on respective Polish spaces {Xc : c ∈ C}, then F =

∏
Ec/J is a (P-)

trim equivalence relation on
∏
cXc.

Proof. Suppose that V [G0], V [G1] are two generic extensions such that V [G0]∩
V [G1] = V , and x0, x1 ∈

∏
cXc are F -related points in the respective models.

I must find a point x ∈ X in the ground model in the F -equivalence class of
x0, x1.

First, consider the set a0 = {c ∈ C : x0(c) is not Ec-related to any point in
V }. Note that for every c ∈ a0 the points x0(c), x1(c) cannot be Ec-related by
the trimness assumption on Ec. Thus, a0 ∈ J . Similarly, the set a1 = {c ∈ C :
x1(c) is not Ec-related to any point in V } belongs to J .

Find injections 〈fc : c ∈ C〉 in the ground model mapping the set of
Ec-classes to 2ω and consider the points x′0, x

′
1 ∈ (2ω)C defined by x′0(c) =

fc([x0]Ec) if x0(c) is Ec-related to some ground model element, and x′0(c) = 0
otherwise; similarly for x′1. By the previous paragraph, x′0 and x′1 are =J -related
elements of the respective models N0, N1. By the trimness assumption on =J ,
there is a point y′ ∈ V ∩

∏
c 2ω which is =J -related to both x′0, x

′
1. Any point

y ∈
∏
cXc in the ground model with the property that for every c ∈ C, if

there is z ∈ Xc with fc(z) = y′(c) then fc(y(c)) = y′(c), is F -related to both
x0, x1.

Corollary 6.5.3. Let En for n ∈ ω be (P-)trim analytic equivalence relations.
Then

∏
nEn and

∏
nEn modulo finite are also (P-)trim equivalence relations.

Proof. In view of Theorem 6.5.2, it is enough to check that =2ω

J and =2ω

K are
trim equivalence relations, where J is the ideal containing just the empty set,
and K is the ideal containing just the finite sets. Now, =2ω

J is smooth and
therefore trim. The relation =2ω

K is just equal to E1. To see that E1 is trim,
let V [G0], V [G1] be generic extensions containing respective E1-related points
x0, x1 ∈ (2ω)ω. The points x0, x1 have the same tail. If this tail is not in the
ground model, then V [G0] ∩ V [G1] 6= V . If the tail is in the ground model,
then the equivalence class of x0, x1 has a representative in the ground model,
verifying the trimness.

Theorem 6.5.4. Whenever E is a proper-trim analytic equivalence relation on
a Polish space X, then E+ is a proper-trim equivalence relation on Xω.
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Proof. Let V [G0], V [G1] be generic extensions such that V [G0] ∩ V [G1] = V ,
V [G0] is an extension effected by a proper notion of forcing, and let y0, y1 ∈ Xω

be two E+-related points in the respective models. I must find a point y ∈ Xω

in the ground model in their E+-class.
First note that for every n ∈ ω, the point y0(n) ∈ X ∩ V [G0] must be E-

related to a point in the ground model. If this failed for some n ∈ ω, then
y0(n) is not E-related to any point in the model V [G1] either, by the trimness
assumption on E. In particular, y0(n) could not be E-related to any y1(m) for
m ∈ ω, contradicting the assumption that y0 E

+ y1.
Thus, the set a = {[y0(n)]E : n ∈ ω} = {[y1(n)]E : n ∈ ω} is a subset of the

ground model, it belongs to both V [G0] and V [G1] and therefore to the ground
model. It is countable in the proper extension V [G0] and therefore must be
countable in the ground model. Let y ∈ Xω be any point in the ground model
visiting exactly the E-equivalence classes in the set a. The point y works as
desired.

As a final remark in this section, I will compare the proper-trimness with a
class of equivalence relations introduced by Kanovei.

Definition 6.5.5. (Kanovei, [12, Section 13.5]) K is the smallest class of analytic
equivalence relations containing the identity and closed under Borel reduction,
countable union, modulo finite product, and Friedman–Stanely jump.

Thus,the class of proper-trim equivalence relations is closed under the generating
operations of K and so Kanovei’s class K is included in the class of proper-trim
equivalence relations. There are trim equivalence relations which do not belong
to K. Some of them are introduced in Definition 6.6.19; they have in fact strong
ergodicity properties with respect to equivalence relations in kanovei’s class by
Theorem 7.1.11.

6.6 Examples

The purpose of this section is to explore a spectrum of trim or proper-trim
equivalence relations.

Among the equivalence relations Borel reducible to an orbit equivalence re-
lation, the landscape is not altered much by the introduction of trimness. By
the following Theorem 6.6.1, all equivalence relations classifiable by countable
structures are proper-trim. On the other hand, all orbit equivalence relations
which are not classifiable by countable structures reduce an orbit equivalence
relation of a turbulent action by a theorem of Hjorth [12, Lemma 13.3.4], which
prevents them from being proper-trim by Theorem 6.1.2. Thus, the class of
proper-trim equivalence relations Borel reducible to an orbit equivalence rela-
tion coincides with the class of relations classifiable by countable structures. By
Theorem 6.3.3 then, the class of trim orbit equivalence relations coincides with
the class of pinned equivalence relations classifiable by countable structures, for
which I do not have a good characterization–Question 3.1.11.
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Theorem 6.6.1. If E is an equivalence relation classifiable by countable struc-
tures, then E is proper-trim.

Proof. Such an equivalence relation is Borel-reducible to isomorphism of two-
place relations on ω, so by Theorem 6.2.5 it is enough to deal with the equiv-
alence relation F of isomorphism of two-place relations on ω; the underlying
space of F is X = P(ω2). Let V [G0], V [G1] be two generic extensions with
V [G0] a proper forcing extension of V and V [G0]∩ V [G1] = V . Let x0 ∈ V [G0]
and x1 ∈ V [G1] be F -related points. I must show that x0, x1 are F -related to a
point in V .

Let α be an ordinal such that x0 has Scott rank α. Since V [G0] is a model of
ZFC, the ordinal α is countable there, and since it is a proper forcing extension
of V , the ordinal α is countable in V . Consider the equivalence relation F
restricted to the Borel set B of relations of rank α. This relation belongs to
the ground model, it is Borel, classifiable by countable structures. Thus, by
[12, Theorem 12.5.2] it is reducible to an equivalence relation obtained by a
countable transfinite repetition of the operation of Friedman-Stanley jump and
increasing union. In view of Theorems 6.5.4 and 6.5.1, F � B is proper-trim,
and so x0, x1 are F � B-related to a point x2 ∈ B in the ground model. Clearly,
x2 F x0 as desired.

Thus, most applications of the trim concept can be found on the “dark side”–
among the equivalence relations that are not reducible to an orbit equivalence
relation. Among those, I will explore the equivalence relations of the form =J

or =2ω

J for various analytic ideals J on ω. The following concept will be used
frequently to disprove trimness of such equivalence relations.

Definition 6.6.2. Let P be a partial ordering and G a graph on P . Say that
G is a graphing of P if for every p ∈ P and every q0, q1 ≤ p and every open
dense set D ⊂ P there is a finite sequence 〈ri : i ∈ n〉 of conditions in the set D
below p such that r0 ≤ q0, rn−1 ≤ q1 and ri G ri+1 for all i ∈ n− 1.

For example, consider the poset P = 2<ω ordered with reverse inclusion and
the relation G defined by s G t if dom(s) = dom(t) and {j ∈ dom(s) : s(j) 6=
t(j)} has at most one element. It is not difficult to see that G is a graphing of
P .Whenever s ∈ P and t0, t1 ≤ P and D is an open dense set, first extend t0, t1
if necessary so that dom(t0) = dom(t1), let u be a binary string such that for
every t ∈ 2<ω with dom(t) = dom(t0) tau ∈ D holds, and consider any finite

sequence of binary strings 〈vi : i ∈ j〉, starting with ta0 u, ending with ta1 u, all of
the same length, starting with s, ending with u, such that two successive strings
on the sequence differ in exactly one entry. This sequence verifies that G is a
graphing of P .

Lemma 6.6.3. If P is a partial ordering with graphing G, p ∈ P and p 
 τ is
a set of ordinals not in the ground model, then there are conditions p0, p1 ≤ p
and an ordinal α such that p0 G p1 and p0 
 α̌ ∈ τ and p1 
 α̌ /∈ τ .
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Proof. Since p 
 τ /∈ V , there must be an ordinal α and conditions q0, q1 ≤ p
and an ordinal α such that q0 
 α̌ ∈ τ and q1 
 α̌ /∈ τ . Let D be the open dense
poset of conditions deciding the statement α̌ ∈ τ . Use the graphing property
of G to find a finite sequence 〈ri : i ∈ n〉 of conditions in D below p such that
ri G ri+1 for every i ∈ n − 1. Since the endpoints of this sequence decide the
statement α̌ ∈ τ differently, there must be two successive points, say ri and ri+1

on the sequence deciding it differently. The conditions p0 = ri and p1 = ri+1

work as desired.

The situation is simplest in the case of analytic P-ideals J . Here, there is a
complete characterization of trimness of =J as follows:

Theorem 6.6.4. Let J be an analytic P-ideal on ω containing all singletons.
Exactly one of the following occurs:

1. there is an infinite set a ⊂ ω such that J = {b ⊂ ω : b ∩ a is finite};

2. there are pairwise disjoint infinite sets ai ⊂ ω for i ∈ ω such that J =
{b ⊂ ω : b ∩ ai is finite for all i ∈ ω};

3. =J is not proper-trim.

Observe that in item (1) the equivalence relation =J is bireducible with E0

and =2ω

J is bireducible with E1. In item (2), =J is bireducible with Eω0 and
=2ω

J is bireducible with Eω1 . It follows that all of these equivalence relations are
trim. As a corollary,

Corollary 6.6.5. Let J be an analytic P-ideal on ω. Then =J is trim if and
only if =2ω

J is trim.

Proof of Theorem 6.6.4. First observe that in item (1) the equivalence relation
=J is bireducible with E0 and in item (2) =J is bireducible with Eω0 . As Eω0
is not reducible to E0, and both E0, E

ω
0 are trim relations, the three items are

indeed mutually exclusive. I must prove that one of the items does occur. Using
a theorem of Solecki [23], find a lower semicontinuous submeasure φ on ω such
that J = {a ⊂ ω : limn φ(a \ n) = 0}.

Case 1. There is ε > 0 such that the set aε = {n ∈ ω : φ(n) < ε} is in J .
This immediately implies that (1) occurs with a = ω \ aε.

Case 2. Case 1 fails and for every i ∈ ω greater than 0 there is εi > 0
such that lim supn φ(aεi \ n) < 2−i. Write also aε0 = ω. Consider the sets
ai = aεi \ aεi+1 . For every set b ⊂ ω, if b has infinite intersection with some ai,
then b /∈ J , since b contains infinitely many singletons of φ-mass ≥ εi+1. On the
other hand, if b has finite intersection with every ai then lim supn φ(b \ n) = 0
and so b ∈ J . Thus, item (2) occurs as witnessed by the sets ai : i ∈ ω (possibly
removing the finite ones among them).

Case 3. Both Case 1 and Case 2 fail. I will show that =J is not proper-trim.
Let P be the poset of all pairs p = 〈tp, εp〉 where tp is a finite binary string and
εp > 0 is a real number. The ordering is defined by q ≤ p if tp ⊂ tq, εq ≤ εp,
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and for all n ∈ dom(tq \ tp), if tq(n) = 1 then φ({n}) < εp. The poset P is
countable and therefore proper. Let ẋgen ∈ 2ω be the P -name for the union of
the first coordinates of the conditions in the generic filter. I will show that ẋgen
is a nontrivial =J -trim P -name.

I will first show that P 
 ẋgen is not =J -related to any element of the ground
model. Suppose for contradiction that there is y ∈ 2ω in the ground model and
a condition p ∈ P forcing ẋgen =J y̌. As Case 2 fails, there is δ > 0 such that for
every ε > 0, lim supn φ(aε \ n) > δ. Strengthening the condition p if necessary,
I may find a number n ∈ ω such that p 
 φ({m > n : ẋgen(m) 6= y̌(m)}) < δ.
Since φ(aεp \ max(n, dom(tp))) > δ, there is a finite set u ⊂ aεp such that
min(u) > n,dom(tp) such that φ(u) > δ. Let q ≤ p be any condition such
that tq is a binary string extending tp with u ⊂ dom(tq) and such that for all
k ∈ dom(tq \ tp), if k /∈ u then tq(k) = 0 and if k ∈ u then tq(k) = 1 − y(k).
Then q forces the set {m > n : ẋgen(m) 6= y̌(m)} to contain u as a subset and
therefore to have mass > δ, contradicting the choice of p, n.

Now I have to show that ẋgen is a =J -trim name. If p0, p1 ∈ P are condi-
tions, I must produce a generic extension in which there are filters G0, G1 ⊂ P
separately generic over V such that p0 ∈ G0, p1 ∈ G1, ẋgen/G0 =J ẋgen/G1,
and V [G0] ∩ V [G1] = V . To simplify the notation, assume p0 = p1 is the
largest condition in the poset P . Let Q be the poset of all pairs q = 〈tq, sq, εq〉
where tq, sq are finite binary strings of the same length, and εq > 0 is a real
number. The ordering is defined by r ≤ q if tq ⊂ tr, sq ⊂ sr, whenever
n ∈ dom(sr \ sq) and sr(n) = 1 or tr(n) = 1 then φ({n}) < εq, and finally
φ({n ∈ dom(sr \sq) : tr(n) 6= sr(n)})+εr < εq. If H ⊂ Q is a filter generic over
V , let G0 = {〈tq, εq〉 : q ∈ H} ⊂ P and G1 = {〈sq, εq〉 : q ∈ H} ⊂ P , and write
x0 = ẋgen/G0 and x1 = ẋgen/G1. The following claims complete the proof.

Claim 6.6.6. Q forces both G0, G1 to be filters on P generic over the ground
model.

Proof. Given q ∈ Q, the pair 〈tq, εq〉 is a condition in P , and if p ≤ 〈tq, εq〉 is its
strengthening in P , then 〈tp, (tp \ tq) ∪ sq, εp〉 is a condition in Q stronger than

q forcing p ∈ G0. The obvious density argument then shows that Q 
 Ġ0 ⊂ P
is a generic filter over V . The case of Ġ1 is symmetric.

Claim 6.6.7. Q 
 ẋ0 =J ẋ1.

Proof. Suppose ε > 0 is a real number and q ∈ Q is a condition. Shrinking εq if
necessary, I may assume that εq ≤ ε. The definition of the poset Q then shows
that q 
 φ({n ∈ ω : ẋ0(n) 6= ẋ1(n)} \ dom(tq)) ≤ εq. As ε > 0 was arbitrary,
this proves the claim.

Claim 6.6.8. Q 
 V [G0] ∩ V [G1] = V .

Proof. For contradiction let τ0, τ1 be P -names for sets of ordinals and q ∈ Q a
condition such that q 
 τ0/G0 = τ1/G1 /∈ V . Let p = 〈tq, εq/2〉. It must be the
case that p 
P τ0 /∈ V , otherwise an extension of P forcing τ0 ∈ V would yield a
condition in the poset Q stronger than q such that τ0/G0 ∈ V . Now, the relation
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connecting conditions in P � p if their first coordinates have the same length and
differ in at most one entry is a graphing of P � p. By Lemma 6.6.3, there are an
ordinal α, a real number ε > 0, and finite binary strings u0, u1 of the same length
such that u0, u1 differ in exactly one entry, 〈u0, ε〉 and 〈u1, ε〉 are conditions in
the poset P stronger than p, and 〈u0, ε〉 
 α̌ /∈ τ0 and 〈u1, ε〉 
 α̌ ∈ τ0.

Let v be a finite binary string and δ > 0 a real number such that 〈v, δ〉 ≤
〈u0 rew sq, ε〉 is a condition in P deciding the statement α̌ ∈ τ1. Suppose for
definiteness that it decides it in the negative. In such a case, let t = v rew u1,
s = v, and check that 〈t, s, δ〉 is a condition in the poset Q stronger than q.
The construction of this condition implies that it forces α̌ ∈ τ0/G0 \ τ1/G1,
contradicting the choice of the condition q.

The situation of Fσ-ideals is not as clear-cut. Note that if J is an Fσ-
ideal, then the equivalence relation =J has Fσ classes, therefore is pinned by
Fact 3.1.3, and so by Theorem 6.3.3 the notions of trimness, proper-trimness
and Cohen-trimness coincide in this case. I will discuss two apparently typical
cases. First, let C = {〈m,n〉 ∈ ω × ω : n ≤ m} and let the eventually different
ideal be the ideal of those subsets a ⊂ C for which the cardinalities of vertical
sections of a are bounded.

Theorem 6.6.9. Let J be the eventually different ideal. Then =J is not proper-
trim.

Proof. Let X = 2C , let P be the usual Cohen poset on X consisting of finite
partial maps from C to 2 ordered by reverse inclusion, and let τ be the usual
P -name for the generic element of X. I will show that τ is a nontrivial E-trim
name.

The nontriviality of τ is easy. Suppose that x ∈ 2C is an arbitrary element,
p ∈ P and n ∈ ω. I must show that there is q ≤ p such that q forces the
set {c ∈ C : x(c) 6= τ(c)} to contain a vertical section of size at least n.
To do this, just find a number m > n such that Cm ∩ dom(p) = 0 and let
q = pm ∪ (1− x � Cm).

The trimness of τ is slightly more difficult. For conditions p, q ∈ P I must
find a way to force filters G,H ⊂ P which are separately generic over V , τ/G =J

τ/H, V [G] ∩ V [H] = V , and p ∈ G, q ∈ H. For simplicity assume that p, q = 0.
Let R be the poset of all pairs r = 〈pr, qr〉 where pr, qr ∈ P are two conditions
with the same domain such that no two elements of the set {c ∈ dom(pr) :
pr(c) 6= qr(c)} lie in the same vertical section of the set C. The ordering on
Q is coordinatewise extension. Let Ġ, Ḣ be the R-names for the filters on P
generated by the first or second coordinates of conditions in the R-generic filter.
I will now verify the requisite properties of the poset R one by one.

Claim 6.6.10. R 
 Ġ, Ḣ ⊂ P are both filters generic over V .



82 CHAPTER 6. TRIM EQUIVALENCE RELATIONS

Proof. Given any condition r ∈ R and a condition p′ ≤ pr, the pair r′ =
〈p′, qr∪p′ \pr〉 is a condition in R stronger than r. The genericity of the filter Ġ
then follows by a straightforward density argument. The genericity of the filter
Ḣ uses a symmetric argument.

Claim 6.6.11. R 
 τ/Ġ =J τ/Ḣ.

Proof. The set {c ∈ C : (τ/Ġ)(c) 6= (τ/Ḣ)(c)} can contain at most one element
in each vertical section of the set C by the definition of the poset R, and therefore
it is forced to belong to J .

Claim 6.6.12. R 
 τ/Ġ is not =J -related to any element of the ground model.

Proof. It is easy to check that the =J -classes are meager in 2C , and therefore
the P -generic point τ cannot belong to any =J -class represented in the ground
model.

Claim 6.6.13. R 
 V [Ġ] ∩ V [Ḣ] = V .

Proof. Suppose that r ∈ R is a condition, σ and χ are P -names for sets of
ordinals and r 
 σ/Ġ = χ/Ḣ. Strengthening r if necessary I may assume that
every vertical section of the set C is either disjoint from or a subset of dom(pr).
It will be enough to show that the condition pr ∈ P decides the membership of
any ordinal in σ and therefore forces σ ∈ V .

Suppose that this fails. By Lemma 6.6.3 applied to P and σ, there must be
an ordinal α and conditions p0, p1 ≤ pr such that the conditions p0, p1 have the
same domain, differ in exactly one entry, and p0 
 α̌ ∈ σ and p1 
 α̌ /∈ σ.

Now, let q = qr ∪ (p0 \ pr); so q ∈ P is a condition strengthening qr. Find
a condition q′ ≤ q in P deciding the statement α̌ ∈ χ; for definiteness assume
that the decision is negative. Let p′ = p1 ∪ q′ \ q ≤ p1. This is a condition in P
forcing α̌ /∈ σ. The pair 〈p′, q′〉 is a condition in R smaller than r, and it forces
α ∈ σ/Ġ∆χ/Ḣ. This is a contradiction.

Question 6.6.14. Is there a turbulent group action whose orbit equivalence is
Borel reducible to =J?

Second, let the branch ideal be the ideal on 2<ω generated by linearly ordered
subsets of 2<ω.

Theorem 6.6.15. Let J be the branch ideal. The equivalence relation =2ω

J is
trim.

Proof. Let X = (2ω)2
<ω

= dom(=2ω

J ). For every node t ∈ ω<ω write [t] for
the set of all nodes in 2<ω extending t. Let V [G0], V [G1] be two generic
extensions containing respective =J -related points x0, x1 ∈ X. Assume that
V [G0] ∩ V [G1] = V and work to find a ground model point x ∈ X which is
=J -related to both x0, x1.
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Let T = {t ∈ 2<ω : x0 � [t] is not =J -equivalent to any point in the ground
model}. This is a subtree of ω<ω. If 0 /∈ T then the proof is complete; thus, it
is only necessary to derive a contradiction from the assumption 0 ∈ T . First,
observe that the tree T cannot have any terminal nodes: if t was a terminal
node of T then one could combine the ground model witnesses for ta0 /∈ T and
ta1 /∈ T to find a witness for t /∈ T . Second, observe that the definition of the
tree T depends only on the =J -class of x0 and so T ∈ V [G0]∩V [G1] = V . Since
T is a nonempty ground model tree without endnodes, it must have an infinite
branch y ∈ 2ω in the ground model. Since x0 =J x1, there is a number n ∈ ω
such that for every t ∈ 2<ω such that x0(t) 6= x1(t), either t is incompatible
with y � n or else t is an initial segment of y. Let e = [y � n] \ y � m : m ≥ n}
and observe that e ∈ V and x0 and x1 coincide on e, therefore x0 � e ∈ V . If
z ∈ V is any function in 2[y�n] extending x0 � e, then z =J x0 � [t], contradicting
the assumption that y � n ∈ T .

Even though the Fσ-ideals seem to be easy to deal with, I still do not know
a good answer to the following question.

Question 6.6.16. Characterize the collection of those Fσ-ideals J such that
the equivalence relation =J is trim.

The only piece of general information for Fσ-ideals I have at this point that the
investigation of =J and the more complicated =2ω

J yields the same result:

Theorem 6.6.17. For Fσ-ideal J on ω, =2
J is trim if and only if =2ω

J is trim.

Proof. By a result of Mazur [20], there is a lower semicontinuous submeasure φ
on ω such that J = {a ⊂ ω : φ(a) < ∞}. Write E for the equivalence relation
=ω
J on the space X = (2ω)ω. Since =2

J is easily continuously reducible to E,
if E is trim then so is =2

J . For the opposite implication, assume that E is not
trim. As E is a Kσ-equivalence relation, it is pinned by Fact 3.1.3, and so by
Theorem 6.3.3 it must fail to be Cohen-trim. Let P be the Cohen forcing and
ẋ a nontrivial E-trim name on P .

Let {pn : n ∈ ω} be an enumeration of P with infinitely many repetitions,
and by induction on n ∈ ω build finite sets an ⊂ ω and functions fn : an → ω
so that

• the sets an are pairwise disjoint, of respective φ-mass at least n;

• there are conditions q, r ≤ pn and a function gn : an → 2 such that for
every i ∈ an, q 
 ẋ(i)(fn(i)) = gn(i) and r 
 ẋ(i)(fn(i)) = 1− gn(i).

Once this construction is performed, let f ∈ ωω be any function extending⋃
n fn and let h : (2ω)ω → 2ω be the continuous map defined by h(x) = x ◦ f .

Since h is a homomorphism of =2ω

J to =2
J , it follows that ẏ = ḣ(ẋ) is an =2

J -
trim P -name. A straightforward density argument using the construction of the
function f shows that P forces ẏ not to be =2

J -equivalent to any element of the
ground model. Thus, =2

J is not trim as required.
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To perform the induction step, just let M be a countable elementary sub-
model of a large structure, let g ⊂ P be a filter generic over M and let h ⊂ P be
a filter generic over M [h], both containing pn.Write x0 = ẋ/g and x1 = ẋ/h. As
P forces ẋleft not to be E-related to any ground model element of X, it must be
the case that x0Ex1 fails, and so there is a set an ⊂ ω of φ-mass at least n, dis-
joint from all am for m ∈ n, such that for every i ∈ an x0(i) 6= x1(i) holds. For
every i ∈ an, let fn(i) ∈ ω be a number such that x0(i)(f(i)) 6= x1(i)(f(i)), and
let gn(i)x0(i)(f(i)). The existence of the conditions q ∈ g and r ∈ h as required
in the induction hypothesis follows from the forcing theorem easily.

I will now move to analytic ideals which are neither P-ideals nor Fσ. For
a set a ⊂ 2<ω let tr(a) = {x ∈ 2ω : ∃∞n ∃t ∈ a x � n ⊂ t}. This is a closed
subset of 2ω. For an ordinal α ∈ ω1 let Jα = {a ⊂ ω : tr(a) is countable of
Cantor–Bendixson rank < α}. It is not difficult to see that Jα is a Borel ideal.

Theorem 6.6.18. The equivalence relation =2ω

Jα
is trim for every countable

ordinal α.

Proof. Write Fα for the equivalence relation =2ω

Jα
andX = (2ω)2

<ω

= dom(=2ω

Jα
).

The argument proceeds by induction on the ordinal α. For the basis step α = 1,
the equivalence =2ω

J0
is just E1, and E1 is trim by Corollary 6.5.3.

The limit stage of the transfinite induction follows from Theorem 6.5.1, as
for limit α it is the case that Fα =

⋃
β∈α Fβ . For the successor stage, say

α = β + 1 and the theorem has been proved for β. Let V [G0], V [G1] be generic
extensions such that V [G0]∩V [G1] = V , let x0, x1 ∈ X be two Fα-related points
in these respective models, and work to find a representative of their Fα-class
in the ground model. Let T = {t ∈ 2<ω : x0 � [t] is not Fα-related to any
ground model element of X}. This definition depends only on the Fα-class of
x0, and therefore T ∈ V [G0]∩V [G1] = V . Observe that T is closed under initial
segment, and has no terminal nodes. Suppose for contradiction that there is no
ground model point of X which is Fα-related to x0. This means that 0 ∈ T ,
and therefore T has an infinite branch z in the ground model. Consider the set
a = {t ∈ 2<ω : x0(t) 6= x1(t)} and the countable set tr(a) of Cantor–Bendixson
rank < α. There must be a number n ∈ ω such that for every m ≥ n, writing
sm for the finite binary string z � ma(1 − z(m)), the set tr(a) ∩ [t] has rank
< β. In other words, for every m ≥ n the functions x0 � [sm] and x1 � [sm]
are Fβ-related and the tuples 〈x0 � [sm] : m > n〉 and 〈x0 � [sm] : m > n〉 are∏
m Fβ � [sm]-related. As Fβ is trim, Corollary 6.5.3 shows that the equivalence

relation
∏
m Fβ � [sm] is trim as well, and so there must be a point y ∈ (2ω)[y�n]

in the ground model such that for every m ≥ n, y � sm Fβ x0 � sm. But then,
y Fα x0 � [z � n], contradicting the fact that z � n ∈ T .

As a final class of examples, I will introduce an equivalence relation associ-
ated with analytic σ-ideals of compact subsets of compact separable spaces.

Definition 6.6.19. For a compact Polish space X and an analytic σ-ideal I of
compact subsets of X containing all singletons, and C ⊂ X a countable dense
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subset of X, let JI be the ideal on C consisting of set a ⊂ C such that a ∈ I.
Let also =I stand for =JI and =2ω

I stand for =2ω

JI
; these are equivalence relations

on 2C and (2ω)C respectively.

It is immediate that JI is an analytic ideal on C and so =I and =2ω

I are
analytic equivalence relations. The notation abstracts from the choice of the
countable dense set C ⊂ X. The point is that for two such countable dense sets
C,D ⊂ X, a simple back and forth argument produces a bijection π : C → D
such that lim supc∈C d(c, π(c)) = 0 where d is any fixed compatible metric on
X. The bijection transports the versions of the ideal JI defined from C and D
respectively to each other, and the function h : x 7→ x◦π−1 is a homeomorphism
of 2C to 2D which is also a Borel reduction between the two versions of =I on
2C and 2D.

Theorem 6.6.20. The equivalence relation =2ω

I is trim for every analytic σ-
ideal I of compact sets on a compact separable metric space.

Proof. Let C ⊂ X be a countable dense subset of X. Write E for the equivalence
relation =2ω

I on Y = 2C . Let V [G0], V [G1] be generic extensions containing
respective EI -related points y0, y1 ∈ Y . Assume V [G0] ∩ V [G1] = V and work
to find a ground model point y ∈ Y which is E-related to both y0, y1.

Let O be a countable basis for the space X in the ground model, closed
under finite unions and intersections. Let a ⊂ O be the set of all O ∈ O such
that y0 � O is E-related to some ground model point of Y . As this definition
depends only on the E-class of y0, it belongs to both V [G0] and V [G1], and
therefore to th.e ground model Note that X \

⋃
a ∈ I, since it is a subset of

the closure of the set {c ∈ C : y0(c) 6= y1(c)}. Now, consider the set D =
{〈O, z〉 : O ∈ a, z ∈ 2C∩O ∩M and z E y0 � O}. Again, the definition of this set
depends only on the E-class of y0, and so D ∈ V [G0] and D ∈ V [G1], and by
the assumptions D ∈ V . Use the axiom of choice in the ground model to find a
uniformization g ⊂ D. Still working in the ground model, find an enumeration
a = {On : n ∈ ω} and consider any point y ∈ 2C such that for every n ∈ ω, y
agrees with g(On) on the set On \

⋃
m∈nOm. The proof will be complete once

I show that y0 E y.
Let B = {c ∈ C : y0(c) 6= y(c)}. Also, write Bn = {c ∈ On : y0(c) 6= g(On)}

for every n ∈ ω, and A = {c ∈ C : y0(c) 6= y1(c)}. I will show that B ⊂ A ⊂⋃
nBn. This will prove that B ∈ I, since the sets on the right hand side are all

in the σ-ideal I by the assumptions. Suppose that x ∈ B. If x ∈
⋃
a, then find

the smallest number n ∈ ω such that x ∈ On, and observe that x ∈
⋃
m≤nBm.

If x /∈
⋃
a then x ∈ A by the remark right after the definition of the set a. In

both cases, x ∈ A ⊂
⋃
nBn has been verified as desired.

The preceding list of trim equivalence relations hides the fact that for most
equivalence relations the status of their trimness remains an open question.

Question 6.6.21. Are the treeable analytic equivalence relations trim or proper-
trim?
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In Section 6.7, I will show that the treeable equivalence relations have a prop-
erty weaker than trimness, Theorem 6.7.3, which suffices for many ergodicity
applications.

Question 6.6.22. Is there an analytic equivalence relation which is largest
among the trim ones in the sense of weak Borel reducibility? How about the
proper-trim relations?

At this point, there are not even good candidates for such universal trim or
proper-trim equivalence relations.

Question 6.6.23. Is there a Borel equivalence relation which is minimal among
the non-trim ones in the sense of weak Borel reducibility? How about the non-
proper-trim relations?

It is known that there is no ≤B-smallest orbit equivalence relation of a turbulent
group action [4]. Still, there could be minimal non-trim equivalence relations
among those that are not reducible to orbit equivalences.

6.7 Variations: number of models

For the purposes of ergodicity results of Chapter 7, the trimness or proper-
trimness may not suffice. The difficulty seems to be that they compare only two
forcing extensions. Thus, one is lead to compare a greater finite number or an
infinite number of forcing extensions that contain representatives of the same
equivalence class. The finite case offers many possible variations. I know how
to use at least one:

Definition 6.7.1. Let E be an analytic equivalence relation on a Polish space
X. Let P be a class of forcing notions and m ∈ ω a natural number larger than
1. Say that E is m-P-trim if in every forcing extension, whenever V [Gn] are
generic extensions of V using a poset in P containing the respective pairwise
E-related points xn ∈ X for n ∈ m, then either there are disjoint sets a, b ⊂ m
such that V [Gn : n ∈ a]∩V [Gn : n ∈ b] 6= V , or there is x ∈ V such that x E xn
for all n ∈ m. If P is the class of all forcing notions then say that E is m-trim.

It is not difficult to see that increasing the number m leads to a larger class of
equivalence relations. The m-trimness is also a reducibility invariant:

Theorem 6.7.2. If E ≤wB F are analytic equivalence relations, m ∈ ω, and F
is m-P-trim, then E is m-P-trim.

Proof. Let X = dom(E), Y = dom(F ), a ⊂ X countable, and h : X → Y a
Borel function which is a reduction of E to F on X \ [a]E . In some forcing
extension, let V [Gn] for n ∈ m be intermediate forcing extensions containing
respective E-related points xn ∈ X for n ∈ ω. If one of the xn is E-related
to some x ∈ a, then the conclusion of σ-P-trimness is verified. Otherwise, the
Shoenfield absoluteness shows that h(xn) ∈ Y for n ∈ ω are F -related points in
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the respective models V [Gn]. By the m-trimness assumption about F , either
there are disjoint sets a, b ⊂ m such that V [Gn : n ∈ a] ∩ V [Gn : n ∈ b] 6= V ,
or there is y ∈ V such that y F h(xn) for all n ∈ ω. In the former case, the
trimness conclusion for E has been verified. In the latter case, the Shoenfield
absoluteness between V and V [G0] shows that there must be x ∈ X in the
ground model such that x /∈ [a]E and h(x) F y. Then, x is E-related to all xn
as required.

One interesting case where I can verify 4-trimness but not trimness itself is the
class of treeable equivalence relations.

Theorem 6.7.3. If E is a treeable equivalence relation on a Polish space X,
then E is 4-trim.

Proof. Just like Theorem 3.1.6. Let T ⊂ X2 be a cycle-free analytic graph such
that the equivalence classes of E are exactly the connectedness components of
T . Suppose that in some generic extension, {xn : n ∈ 4} are pairwise E-related
points of the space X. For i, j ∈ m let w(xi, xj) be the unique injective walk
from xi to xj along T . Then w(xi, xj) is a finite sequence of points in X and
all of its entries belong to the model V [xi, xj ] by the Shoenfield absoluteness.
Reviewing all the finitely many possible configurations of the points {xn : n ∈ 4}
with respect to T , it becomes obvious that there must be disjoint two-element
sets a = {n0, n1}, b = {n2, n3} ⊂ 4 such that w(xn0

, xn1
) ∩ w(xn2

, xn3
) 6=

0. Either the point in the intersection does not belong to V , in which case
V [xn0

, xn1
] ∩ V [xn2

, xn3
] 6= V , or the point belongs to V , in which case it is a

representative of the E-class of the xn’s in V . In both cases, the criterion for
4-trimness has been verified.

The following question remains open.

Question 6.7.4. If E is an equivalence relation and m ∈ ω is a natural number
greater than 1, is m-trimness equivalent to trimness? Similar for m-P-trimness
for various classes P of posets.

Comparing infinitely many generic extensions at once also offers a number
of variations, of which I consider only the most natural one:

Definition 6.7.5. Let E be an analytic equivalence relation on a Polish space
X. Let P be a class of forcing notions. Say that E is σ-P-trim if in every
forcing extension, whenever V [Gn] are forcing extensions of the ground model
for every n ∈ ω, V [Gn] is a forcing extension using a poset in P, and xn ∈ V [Gn]
are pairwise E-related points, either

⋂
n V [Gn] 6= V or there is x ∈ V such that

x E xn for all n ∈ ω. If P is the class of all forcing notions then say that E is
σ-trim.

The notion of σ-trimness is stronger than that of trimness. If E fails to be
trim and, in some generic extension, x0, x1 ∈ X are E-related points such that
V [x0] ∩ V [x1] = V and x0, x1 are not E-related to any element of the ground
model, then the points xn = x0 if n is even and xn = x1 if n is odd, for
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n ∈ ω, violate the σ-trimness. Another immediate observation is the fact that
σ-trimness is a reducibility invariant:

Theorem 6.7.6. If E ≤wB F are analytic equivalence relations and F is σ-P-
trim, then E is σ-P-trim.

Proof. Let X = dom(E), Y = dom(F ), a ⊂ X countable, and h : X → Y a
Borel function which is a reduction of E to F on X \ [a]E . In some forcing
extension, let V [Gn] for n ∈ ω be intermediate forcing extensions containing
respective E-related points xn ∈ X for n ∈ ω. If one of the xn is E-related
to some x ∈ a, then the conclusion of σ-P-trimness is verified. Otherwise, the
Shoenfield absoluteness shows that h(xn) ∈ Y for n ∈ ω are F -related points
in the respective models V [Gn]. By the trimness assumption about F , either⋂
n V [Gn] 6= V , or there is y ∈ V such that y F h(xn) for all n ∈ ω. In the

former case, the trimness conclusion for E has been verified. In the latter case,
the Shoenfield absoluteness between V and V [G0] shows that there must be
x ∈ X in the ground model such that x /∈ [a]E and h(x) F y. Then, x is
E-related to all xn as required.

Most trim equivalences in Section 6.6 fail to be σ-trim and this feature is used to
show that they have ergodicity properties with respect to the class of equivalence
relations classifiable by countable structures, which are σ-trim:

Theorem 6.7.7. Every equivalence relation classifiable by countable structures
is σ-proper-trim.

Proof. The same proof as for proper-trimness. I will first show that σ-proper-
trimness is preserved under the Friedman-Stanley jump and countable unions.

Claim 6.7.8. Let E be an analytic equivalence relation on a Polish space X.
If E is σ-proper-trim then so is E+.

Proof. Suppose that V [Gm] for m ∈ ω are generic extensions of V , containing
respective E+-related poits ym ∈ Xω, and V [G0] is a proper forcing extension of
V . Suppose that V =

⋂
m V [Gm]. For every k ∈ ω, each model V [Gm] contains

an E-equivalent of the point y0(k) (it must appear on the sequence ym). By
the σ-proper-trimness, the equivalence class [y0(k)]E has a representative in the
ground model. The set a = {[z]E : z ∈ V and ∃k z E y0(k)} belongs to all
models V [Gm] for all m ∈ ω, and therefore to the ground model. The set a
countable in the model V [G0], which is a proper forcing extension of V , and so
a must be countable already in the ground model. Let y ∈ V be a point which
visits exactly all the E-equivalence classes in the set a. It is easy to see that
y E+ y0, completing the proof of the claim.

Claim 6.7.9. Let En be analytic equivalence relations on respective pairwise
disjoint Polish spaces Xn for n ∈ ω. If every En is σ-proper-trim then so is⋃
nEn.
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Proof. Write X =
⋃
nXn and E =

⋃
nEn. Suppose that V [Gm] for m ∈ ω

are generic extensions of V , containing respective E-related poits xm ∈ X, and
V [G0] is a proper forcing extension of V . Suppose that V =

⋂
m V [Gm]. There

must be a number n ∈ ω such that all xm’s are in the space Xn and are pairwise
En-related. Applying the σ-proper-trimness to En, conclude that there is a
point x ∈ Xn in the ground model which is En-related to all xm. Then x is also
E-related to all xm and the σ-proper-trimness of E follows.

Now, towards the proof of the theorem, it is enough to argue that E =
ES∞ , the isomorphism of binary relations on ω, is σ-proper-trim, since it is
the ≤B-largest equivalence relation classifiable by countable structures. Let
X = 2ω×ω = dom(E). Let V [Gn] for n ∈ ω be generic extensions of V containing
respective pairwise E-related points xn ∈ X. Assume also that V [G0] is a proper
extension of V and

⋂
n V [Gn] = V . I must show that the class [x0]E has a

representative in the ground model. Let α be the Scott rank of x0. The ordinal
α is countable in V [G0], and as V [G0] is a proper forcing extension of V , it is
also countable in V . Let B ⊂ X be the set of all relations of Scott rank ≤ α.
Thus, B is a Borel set coded in the ground model, and E � B is a Borel relation.
As E � B is a Borel equivalence relation classifiable by countable structures, it
is obtained by a repeated use of Friedman–Stanley jump, disjoint union, and
Borel reduction by [12, Theorem 12.5.2], and by the previous claim it is σ-
proper-trim. Applying its σ-proper-trimness, there must be a point x ∈ B in
the ground model such that x E x0. This point confirms the σ-proper-trimness
of E as well.

The following question remains open:

Question 6.7.10. Are the following equivalent for an analytic equivalence re-
lation E?

1. E is σ-proper-trim;

2. E is classifiable by countable structures.

Changing the class of partial orders in question may change the answer. The
following related theorem will be used in Chapter 7.

Theorem 6.7.11. Let J be the branch ideal on 2<ω. Let P be the class of all
posets of the form PI where I is a c.c.c. Π1

1 on Σ1
1 σ-ideal of analytic subsets of

some Polish space X and PI is the collection of all Borel I-positive sets ordered
by inclusion. The equivalence relation =J is σ-P-trim.

The class P includes posets as the Cohen poset (associated with I =meager
ideal), the random poset (associated with I =the Lebesgue null ideal), the
Maharam algebras, the eventually different real forcing [26, Proposition 3.8.12]
and some other posets. The posets in P do not add dominating reals by [26,
Proposition 3.8.15], and so the theorem does not resolve the case of P =Hechler
forcing.

The proof uses a lemma of independent pure forcing interest.
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Lemma 6.7.12. Suppose that P ∈ P, p ∈ P is a condition and p 
 〈ẏn : n ∈ ω〉
is a sequence of points in 2ω. Then one of the following holds:

1. there is q ≤ p and n ∈ ω such that q 
 ẏn is in the ground model;

2. there is q ≤ p and a function g ∈ ωω such that q 
 〈ẏn � g(n) : n ∈ ω〉 is
not in the ground model.

Proof. Let I be a σ-ideal on a Polish space X such that P = PI . Strengthening
the condition p ∈ P if necessary, I may assume that there are Borel functions
fn : p → 2ω such that p 
 ∀n ẏn = ḟn(ẋgen). Let A ⊂ ωω × 2ω×ω be the
set A = {〈z, w〉 : ∀n∀m > z(n) w(n,m) = 0 and the set {x ∈ p : ∀n∀m ≤
z(n) fn(x)(m) = w(n,m)} ⊂ X is I-positive}. As the ideal I is Π1

1 on Σ1
1, the

set A is analytic. As the poset PI is c.c.c., the set A has countable vertical
sections. By the first reflection theorem [14, Theorem 35.10], it is covered
by a Borel set with countable vertical sections, which in turn is covered by
graphs of countably many Borel functions {hk : k ∈ ω} from ωω to 2ω×ω by
the Lusin-Novikov theorem [14, Theorem 18.10]. The usual Miller forcing type
fusion arguments then yield a superperfect tree T ⊂ ω<ω such that all functions
hk � [T ] are continuous, and in fact whenever k ∈ ω, t ∈ T is a splitnode
of length > k, j ∈ ω is such that taj ∈ T , and m ∈ j, then the value of
hk(z)(|t|,m) is the same for all z ∈ [T � taj]. Further thinning out the infinite
branchings of the tree T if necessary, I can also assume that whenever k ∈ ω,
t ∈ T is a splitnode of length > k and m ∈ ω, there is a bit yk,t(m) ∈ 2 such
that for all but finitely many j such that taj ∈ T , hk(z)(|t|,m) = yk,t(m) for
all z ∈ [T � taj]. Thus, yk,t ∈ 2ω for every such k, t.

For every k ∈ ω and a splitnode t ∈ T longer than k, consider the set
qk,t = {x ∈ p : ∃∞j ∃z ∈ [T � taj] ∀n ∀m ≤ n fn(x)(m) = hk(z)(n,m)}. This
is a Borel subset of p, since the existential quantification over z can be replaced
with universal by the choice of the tree T . The treatment splits into two cases.

Case 1. Suppose first that there is k, t such that the set q = qk,t is I-positive.
Then write n = |t|, and observe that for every point x ∈ qk,t, fn(x) = yk,t. Thus,
q 
 ẏ|t| is in the ground model, equal to y̌k,t.

Case 2. Suppose that all sets qk,t are in I. In such a case, consider the
set C = {〈x, z〉 : x ∈ p \

⋃
k,t qk,t, z ∈ [T ], and there is k ∈ ω such that

∀n ∀m ≤ z(n) fn(x)(m) = hk(z)(m)}.

Claim 6.7.13. C is a Borel set with σ-bounded vertical sections.

Proof. If x ∈ p was such that Cx is not σ-bounded, there would have to be
k ∈ ω such that the set {z ∈ [T ] : ∀n ∀m ≤ z(n) fn(x)(m) = hk(z)(m)} is not
σ-bounded, and so there would have to be t ∈ ω<ω longer than k such that for
infinitely many j ∈ ω there is y ∈ [T � taj] such that ∀m ≤ z(n) fn(x)(m) =
hk(z)(m). This would, however, put x into the set qk,t, an impossibility.

Now, since I is Π1
1 on Σ1

1, the poset P does not add dominating reals by [26,
Proposition 3.8.15], and so it has the Fubini property with the σ-bounded ideal
on ωω [26, Definition 3.2.1]. As the Borel set C ⊂ p× [T ] has σ-bounded vertical
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sections, this means that the complement p × [T ] \ C must have an I-positive
horizontal section corresponding to some z ∈ ωω. Let q = q′ \

⋃
k,t qk,t, and

review the definition of the set A to conclude that for every w ∈ 2ω×ω, it must
be the case that the set {x ∈ q : ∀n∀m ≤ z(n) fn(x)(m) = w(n,m)} ⊂ X is in
I. This is to say that q 
 〈ẏn � g(n) : n ∈ ω〉 is not in the ground model. The
lemma follows.

Proof of Theorem 6.7.11. Let P ∈ P and assume that V [Gn] for n ∈ ω are
generic extensions of the ground model V [G0] is a P -extension, containing the
respective pairwise =J equivalent points xn ∈ X. Assume that

⋂
n V [Gn] = V

and work to find a ground model point x ∈ X which is =J -related to all xn’s.
Let T = {t ∈ 2<ω : x0 � [t] is not =J -equivalent to any point in the ground

model}. Clearly, T is a tree. Its definition depends only on the =J -class of x0,
therefore T belongs to all V [Gn] for n ∈ ω and so to the ground model. Since
the witnesses for the failure of membership of a binary sequence in the tree
T can be combined, T has no terminal nodes. Assume for contradiction that
0 ∈ T . Since T is a nonempty ground model tree without endnodes, it has a
branch in the ground model. To simplify the notation, assume that this branch
has only 0 entries along it. For every m ∈ ω write tm = (0m)a1.

Let ym = x0 � [tm] for m ∈ ω. Note that for every n ∈ ω, for all but finitely
many m ∈ ω, ym = xn � [tm] as x0 =J xn. Thus, the function z ∈ 2ω defined
by z(m) = 0 if ym ∈ V is in all models V [Gn] for n ∈ ω, and therefore in V .
There are two cases, both of which end in contradiction:

Case 1. For all but finitely many m ∈ ω, z(m) = 0. Then, for some m0 ∈ ω,
the sequence 〈ym : m > m0〉 consists of ground model points only. Since for
every n ∈ ω the model V [Gn] contains a finite modification of this sequence,
the sequence must belong to the ground model. Then, working in the ground
model, let x : [0m0 ] → 2 be any function extending all ym for m > m0. The
definitions show that the values of x and x0 � [0m0 ] can differ only on the branch
y and therefore x =J x0 � [0m0 ]. This contradicts the definition of the tree T
and the assumption that 0m0 ∈ T .

Case 2. The set a = {m ∈ ω : z(m) = 1} is infinite. As z ∈ V , a ∈ V as
well. Apply Lemma 6.7.12 to find a function g : a→ ω such that the sequence
y = 〈ym � 2≤g(m) ∩ [tm] : m ∈ a〉 does not belong to the ground model. For
every number n ∈ ω, the model V [Gn] contains a finite modification of y, namely
the sequence 〈xn � 2≤g(m) ∩ [tm] : m ∈ a〉 . Therefore, y ∈

⋂
n V [Gn]. This

contradicts the assumption that
⋂
n V [Gn] = V .
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Chapter 7

Ergodicity results

The purpose of this chapter is to use variations of the previously obtained tech-
nologies to prove ergodicity results in the following sense.

Definition 7.0.14. Suppose that E,F are analytic equivalence relations on
respective Polish spaces X,Y and I is a σ-ideal on X. Say that E is F -I-
ergodic if for every Borel homomorphism h : X → Y of E to F there is an
F -equivalence class C ⊂ Y such that X \ h−1C ∈ I. If I is the ideal of meager
sets on X, this property will be called I-generically ergodic. If I is the ideal of
null sets with respect to some Borel probability measure µ on X, this property
will be called F -µ-ergodic.

Clearly, ergodicity leads to Borel nonreducibility results: if E is F -I-ergodic
and the equivalence classes of E are in I, then E ≤B F must fail. Any Borel
reduction h of E to F would be also a homomorphism, so there would have to be
an F -class whose h-preimage contains more than one E-class, contradicting the
properties of a reduction. Ergodicity has a great advantage to other methods of
proving nonreducibility results in that it persists under supersets on the E-side
as explained in the following lemma. The lemma also says that it is of interest
to prove ergodicity results for equivalence relations E as small with respect to
inclusion as possible.

Lemma 7.0.15. Suppose that E,F are analytic equivalence relations on re-
spective Polish spaces X,Y and I is a σ-ideal on X. If E′, F ′ are analytic
equivalence relations on respective Polish spaces X ′ = X,Y ′ such that E ⊂ E′

and F ′ ≤B F , then E′ is F ′-I-ergodic.

Proof. Fix a Borel reduction k : Y ′ → Y of F ′ to F . Whenever h : X → Y ′

is a Borel homomorphism of E′ to F ′, then k ◦ h is a Borel homomorphism of
E to F . Therefore, there is an F -class whose k ◦ h-preimage is I-large. The
k-preimage of this F -class is an F ′-class whose h-preimage is I-large.

The following technical lemma will be the main tool for obtaining ergodicity
results:

93
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Lemma 7.0.16. Let E be an analytic equivalence relation on a Polish space
X. Let σ be a nontrivial E-proper-trim name on a poset P , and let I be the
σ-ideal of coanalytic sets C ⊂ X such that P 
 σ /∈ Ċ. For every proper-trim
equivalence relation F , E is F -I-ergodic.

Proof. Let F be a proper-trim equivalence relation on a Polish space Y and let
h : X → Y be a Borel homomorphism of E to F . I will show that there is a
point y ∈ Y such that P 
 ḣ(τ) F y̌. In other words, X \h−1[y]F ∈ I as desired.

Consider the name ḣ(τ) for an element of the Polish space Y . Since the
function h remains a Borel homomorphism of E to F in the P -extension, ḣ(τ)
is an F -trim name. Since F is proper-trim, ḣ(τ) must be an F -trivial F -trim
name, and there must be a condition p ∈ P and a point y ∈ Y such that
p 
 ḣ(τ) F y̌. I will prove that in fact the largest condition forces ḣ(τ) F y̌,
and that will complete the proof.

Suppose for contradiction that some condition q ∈ P forces ḣ(τ) F y̌ to
fail. Use the E-trimness of the name τ to find in some generic extension, filters
G ⊂ P and H ⊂ P so that p ∈ G, q ∈ H, and τ/G E τ/H. Since h is a
homomorphism in that extension, y F h(τ/G) F h(τ/H) and so y F h(τ)/H,
which contradicts the choice of the condition q.

7.1 The category case

I will start with the following strengthening of a seminal result of Greg Hjorth:

Theorem 7.1.1. Let Gy X be a generically turbulent action of a Polish group,
E its orbit equivalence relation, and F a proper-trim equivalence relation. Then
E is F -generically ergodic.

In particular, E is F -generically ergodic for every equivalence relation F clas-
sifiable by countable structures, since all such F ’s are proper-trim by Theo-
rem 6.6.1.

Proof. Let PX be the Cohen forcing on X, i.e. the poset of nonempty open
subsets of X ordered by inclusion. The poset has countable density and adds
a canonical single point ẋgen ∈ X which falls out of all ground model meager
subsets of X. By Lemma 7.0.16, it is enough to show that ẋgen is a nontrivial
E-trim name on PX .

Indeed, ẋgen must be nontrivial since the orbits of the action are meager by
assumption and so no ground model orbit can contain the Cohen point ẋgen .
The trimness follows from Theorem 6.1.2. Suppose that p, q ∈ PX . Let x ∈ p be
a PX -generic point. The orbit of x is dense, in particular it intersects q, and by
the continuity of the action there is a nonempty open neighborhood r ⊂ G such
that r ·x ⊂ q. Let g ∈ r be a PG-generic point over V [x]. By the product forcing
theorem, the pair 〈g, x〉 ∈ G×X is PG×PX -generic over V . By Theorem 6.1.2,
V [x] ∩ V [g · x] = V and so the generic filters on PX obtained from the points x
and g · x witness that ẋgen is indeed an E-trim name.
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Theorem 7.1.2. Let Gy X be a generically turbulent action of a Polish group,
E its orbit equivalence relation, and F a σ-treeable analytic equivalence relation.
Then E is F -generically ergodic.

Proof. Since I do not know if σ-treeable equivalence relations are trim, I cannot
use Theorem 7.1.1 and I have to attack the 4-trimness of treeable equivalence
relations instead. Start with a general claim of independent interest. Let PX
be the usual Cohen poset on X, and PG the usual Cohen poset on G. Let
x ∈ X, gn ∈ G : n ∈ a, and gn : n ∈ b be points generic over V for the finite
support product of PX with a ∪ b many copies of PG, where a, b are pairwise
disjoint index sets.

Claim 7.1.3. V [x, gn · x : n ∈ a] ∩ V [gn · x : n ∈ b] = V .

Proof. Choose an arbitrary element n0 ∈ b. Then V [x] ∩ V [hn0
· x] = V by

Theorem 6.1.2.
As the next step, verify V [x][gn : n ∈ a]∩ V [gn0

· x] = V . To see this, let Qa
be the product of a many copies of PG. The sequence 〈gn : n ∈ a〉 is Qa-generic
over the model V [x, gn0

] by the product forcing theorem. Thus, if c is a set of
ordinals both in V [x][gn : n ∈ a] and in V [gn0

x], by the forcing theorem applied
in the model V [x, gn0 ] to the poset Qa there must be a Qa-name σ ∈ V [x] for a
set of ordinals and a condition q ∈ Q in the compatible with 〈gn : n ∈ a〉 such
that q 
 σ = č. Then, q decides the membership of every ordinal in the set σ.
This is a sentence of the model V [x] and so c = {α : q 
 α̌ ∈ σ} is in the model
V [x]. Since V [x] ∩ V [gn0

· x] = V , I conclude that c ∈ V as desired.
Further, verify V [x][gn : n ∈ a] ∩ V [gn0 · x][gng

−1
n0

: n ∈ b, n 6= n0] = V . To
see this, let Qb be the product of b \ {n0}-many copies of PG. The sequence
〈gn : n ∈ b, n 6= n0〉 is Qb-generic over the model V [x][gn : n ∈ a][gn0

] by the
product forcing theorem. The sequence 〈gng−1n0

: n ∈ b, n 6= n0〉 is Qb-generic
over the same model, since the multiplication by g−1n0

on the right induces an
automorphism of the poset Qb. Then, the equality V [x][gn : n ∈ a] ∩ V [gn0 ·
x][gng

−1
n0

: n ∈ b, n 6= n0] = V follows just like in the previous paragraph.
Lastly, observe that V [x, gn · x : n ∈ a] ⊂ V [x][gn : n ∈ a] and V [gn · x : n ∈

b] ⊂ V [gn0
· x][gng

−1
n0

: n ∈ b, n 6= n0]. Thus, V [x, gn · x : n ∈ a] ∩ V [gn · x : n ∈
b] = V as desired.

Let F be any σ-treeable equivalence relation on a Polish space Y , and h :
X → Y any Borel homomorphism of E to F . Let F =

⋃
n Fn, where Fn are

treeable equivalence relations. In some large forcing extension let x0 ∈ X be a
point PX -generic over V and {gz : z ∈ 2ω} be a perfect collection of PG-generic
points over the model V obtained through Lemma 2.2.8. The points xz = gz ·x0
for z ∈ 2ω are pairwise E-equivalent, and so their values h(xz) for z ∈ 2ω are
pairwise F -related. Let y0 ∈ Y be an arbitrary fixed point in their common
F -equivalence class. A counting argument shows that there is a number n ∈ ω
such that the set {z ∈ 2ω : h(gz · x0) Fn y0} is uncountable, containing four
distinct elements {zn : n ∈ 4}. By the transitivity of the relation Fn, the points
{h(xzn) : n ∈ 4} are pairwise Fn-related. By Claim 7.1.3, for any two disjoint
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sets a, b ⊂ 4, V [xzn : n ∈ a] ∩ V [xzn : n ∈ b] = V . By the 4-trimness of the
treeable equivalence relation Fn, (Theorem 6.7.3), I can conclude that there is
an element y ∈ Y in the ground model which is Fn-related to all points h(xzn)
for n ∈ 4. The analytic set h−1[y]F contains the PX -generic point gz · x0 and
so it is nonmeager. It is also E-invariant and so it has to be in fact co-meager.
This completes the proof of the theorem.

The conclusion of Theorem 7.1.1 is much more common than one may expect.
In fact, the non-trim relations are generically ergodic for all trim relations with
the correct choice of topology on the underlying space:

Theorem 7.1.4. Let E be an analytic equivalence relation on a Polish space
X. The following are equivalent:

1. E is not proper-trim;

2. there is an alternative Polish topology t on X yielding the same Borel
structure, in which all E-classes are meager, and such that for every
proper-trim equivalence relation F , E is F -t-meager ergodic.

Proof. First, assume that (1) fails. Then, the identity on X is a homomorphism
of E to a proper-trim equivalence relation which certainly violates (2).

Second, assume that (1) holds. Proper-trimness is equivalent to Cohen trim-
ness by Theorem 6.3.3. Let P be the Cohen forcing. Thus, there is a nontrivial
E-trim P -name τ for an element of X. Passing to the complete subalgebra of
RO(P ) completely generated by τ if necessary, I may assume that RO(P ) is
completely generated by τ . Let M be a countable elementary submodel of a
large structure containing E as well as P, τ . Let Y be the space of filters on P
generic over M , with the topology generated by sets {g : p ∈ g} for all p ∈ P∩M .
This is a Polish space. The function f : Y → X defined by f(g) = τ/g is con-
tinuous, since for any basic open set O ⊂ X τ/g ∈ O if and only if there is a
condition p ∈ g forcing τ ∈ Ȯ. The function f is also one-to-one as the name
τ completely generated the algebra RO(P ). Adjusting f on a closed nowhere
dense set if necessary (losing continuity but maintaining Borelness), I can find
a Borel bijection f̄ : Y → X such that f = f̄ on an open dense set. I claim
that the topology t on X generated by f̄ -images of open subsets of Y has the
desired properties.

First of all, it is clear that t is a Polish topology as it is homeomorphic to the
Polish space Y via f̄ . It also generates the same Borel structure as the original
topology as one-to-one Borel images of Borel sets are Borel, in particular f̄ and
f̄−1-images of Borel sets are Borel. The E-classes must be t-meager: they are
analytic, therefore have the Baire property, and if one of them, say [x]E for some
x ∈ X were t-nonmeager, there would be a condition p ∈ P such that p 
 τ E x̌.
This contradicts the assumption that τ is a nontrivial name. Finally, for every
proper-trim equivalence relation F , E is F -t-meager ergodic by Lemma 7.0.16,
since the t-meager ideal is exactly the collection {B ⊂ X : B is Borel and
P 
 τ /∈ Ḃ} by the definitions.



7.1. THE CATEGORY CASE 97

Even in quite natural situations, one cannot expect the topology of The-
orem 7.1.4 to be the “natural” topology, and different topologies may have
different generic ergodicity features. This is nicely documented by the following
example.

Theorem 7.1.5. Let J be the ideal on 2<ω generated by branches and an-
tichains.

1. =J is not proper-trim;

2. there is a Borel homomorphism to a trim equivalence relation F such that
preimages of F -classes are meager;

3. =J is F -generically ergodic for every equivalence F classifiable by count-
able structures as well as =K-ergodic where K is the branch ideal on 2<ω.

Thus, the usual product topology on 22
<ω

= dom(=J) in this case does have
generic ergodicity features for many trim equivalence relations, but not for all.
There is a Polish topology on dom(=J) which has generic ergodicity for all trim
equivalence relations by Theorem 7.1.4, but it is not the usual product topology.

Proof. Write X = 22
<ω

= dom(=J). For (1), let C = {〈n,m〉 : m ≤ n} and
let K be the eventually different ideal on C. Let {tn : n ∈ ω} ⊂ 2<ω be an
antichain and let π : C → 2<ω be the injection defined by π(n,m) = tan 0m. It
is easy to see that a subset of C is in K if and only if its π-image is in J . Thus,
π naturally extends to a continuous injective reduction h : 2C → X of =K to
=J defined by h(y)(π(n,m)) = y(n,m) and h(y)(t) = 0 if t /∈ rng(π). As =K is
not trim, =J cannot be trim either by Theorem 6.2.5.

For (2), let Y = 2ω and let I be the σ-ideal of nowhere dense compact subsets
of Y , and construct the desired homomorphism from =J to =I . As =I is trim
by Theorem 6.6.20, this will complete the proof of (2). Indeed, let C ⊂ 2ω be
a countable dense set so that 2C = dom(=I). Let π : 2<ω → C be a bijection
such that π(t) ∈ [t]. It is easy to see that if a ⊂ 2<ω is a chain or an antichain,
then the closure of π′′a ⊂ Y is nowhere dense. Thus, π naturally extends to
a homomorphism h : X → 2C defined by h(x)(π(t)) = h(t) and h(x)(c) = 0 if
c /∈ rng(π). This homomorphism has the requested properties.

For (3), I will show that E is not σ-Cohen trim. More specifically, let P for
the poset of finite partial functions from 2<ω to 2. In some generic extension, I
will construct points xn ∈ X for n ∈ ω so that

• the points xn are pairwise =J -related;

• each xn is P -generic over the ground model;

• the set {xn : n ∈ ω} is dense in X;

•
⋂
n V [xn] = V .
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The theorem then swiftly follows. If F is an equivalence relation classifiable
by countable structures or the equivalence =2ω

J and h : X → dom(F ) is a
Borel homomorphism of =J to F , then the values h(xn) ∈ V [xn] for n ∈ ω are
pairwise F -related by the first item. By Theorem 6.7.7 or 6.7.11, their F -class
is represented in the ground model by some y ∈ ωω. By the second and third
item, the set h−1[y]F is comeager, as it is a Borel set which contains a dense set
of P -generic reals. This will complete the proof of the theorem.

For the construction of the points xn, it is enough to perform the following
task. Given a P -generic point x0 ∈ X, a condition p ∈ P , and a set c ∈ V [x0]\V
of ordinals, in some further forcing extension I will find a point x1 extending p,
=J -related to x0 and P -generic over the ground model, such that c /∈ V [x1].

Work in the model V [x0]. Consider the index set 2<ω with the extension
ordering and the usual order topology. Let F be the collection of clopen subsets
O ⊂ 2<ω such that c ∈ V [x0 � O].

Claim 7.1.6. F is a filter of nonempty clopen sets.

Proof. The empty set does not belong to F by the choice of c. If O0, O1 ∈ F,
then observe that the functions x0 � (O1 \ O0) and x0 � (O0 \ O1) are product
generic over the model V [x0 � O0∩O1]. Now, c ∈ V [x0 � O0] and c ∈ V [x0 � O1],
by the product forcing theorem 2.2.6 applied in the model V [x0 � O0 ∩ O1] it
follows that c ∈ V [x0 � O0 ∩O1] , and so O0 ∩O1 ∈ F as well.

Use the claim and a compactness argument to find a branch z ∈ 2ω such
that each clopen set in F contains all but finitely many initial segments of z.
Consider the poset Q of all pairs q = 〈pq, aq〉 where pq ∈ P and aq ⊂ dom(pq)
is a finite antichain of binary strings which are not an initial segment of z such
that for every t ∈ dom(pq), if pq(t) 6= x0(t) then t ∈ aq or t is an initial segment
of z. The poset Q is ordered by r ≤ q if pq ⊂ pr and aq ⊂ ar. Let ẋ1 ∈ X be the
Q-name for the union of the first coordinates of the conditions in the generic
filter. I will verify the required properties of the name ẋ1 one by one.

Claim 7.1.7. Q 
 ẋ1 is P -generic over the ground model.

Proof. Let q ∈ Q and let D ⊂ P be an open dense subset in the ground model.
By the P -genericity of the point x0, there is a condition p ∈ P such that p ⊂ x0
and p rew pq ∈ D. Then, the condition r = 〈p rew pq, aq〉 is stronger than q
in the poset Q and it forces ẋ1 to meet the open dense set D in the condition
p rew pq.

Claim 7.1.8. Q 
 x̌0 =J ẋ1. The branch z is the only limit point of the set
{t ∈ 2<ω : x̌0(t) 6= ẋ1(t)}.

Proof. The definition of the poset Q immediately guarantees that the set {t ∈
2<ω : x0(t) 6= x1(t)} is covered by the union of the set of initial segments of z
(a branch) and the union of the second coordinates of conditions in the generic
filter (an antichain).
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For the second sentence, suppose that q ∈ Q is a condition and n ∈ ω.
It is easy to strengthen the condition q and find a number m ≥ n so that
aq ∪ {z � m} is a maximal antichain in 2≤m. Then q forces that all elements of
the set {t ∈ 2<ω : x0(t) 6= x1(t)} longer than m already extend the string z � m.
The second sentence now follows by a straightforward density argument.

Claim 7.1.9. Q 
 č /∈ V [ẋ1].

Proof. If this failed, there would be a condition q ∈ Q, a P -name τ in the
ground model such that q 
 τ/x1 = č. Find an initial segment t ⊂ z such
that all elements of aq are incompatible with t in 2<ω. Consider the clopen set
O ⊂ 2<ω consisting of all binary strings which do not extend t.

Use the genericity of x0 to find a finite fragment p ∈ P of x0 such that
p rew pq decides in P the statement τ ∈ V [ẋgen � O]. The decision must be
in the negative. Otherwise, the condition r = 〈p rew pq, aq〉 ≤ q in Q forces
τ/ẋ1 ∈ V [ẋ1 � O]. Since Q 
 ẋ1 � O = x̌0 � O up to finitely many exceptions by
Claim 7.1.8, r also forces č = τ/ẋ1 ∈ V [x0 � O], which contradicts the definition
of O and the choice of the guiding branch z ∈ 2ω.

Now, by Lemma 6.6.3 applied in the model V [x0 � O] and the P -genericity
of x0 over the ground model, there must be two conditions p0, p1 ∈ P and an
ordinal α such that

• p0 is a finite fragment of x0;

• dom(p0) = dom(p1) and there is unique s ∈ dom(p0) such that p0(s) 6=
p1(s). This s moreover does not belong to the set O;

• the conditions p0 rew pq and p1 rew pq in the poset P decide the statement
α̌ ∈ τ differently.

Suppose for definiteness that p1 rew pq 
P α̌ ∈ τ while α /∈ c. Let s ∈
dom(p1) be the unique string such that p0(s) 6= p1(s). Note that s extends
t. Suppose for definiteness that s is not an initial segment of z. Then r =
〈p1 rew pq, aq ∪ {s}〉 is a condition in the poset Q forcing that α belongs to the
symmetric difference of c and τ/x1. This contradicts the choice of q and τ .

There are many ergodicity results among various trim equivalence relations
as well. I will show that the trim equivalence relations =I for a σ-ideal I of
compact sets possess ergodicity properties with respect to great many other
trim or not trim equivalence relations. In particular, this shows that they are
not included in Kanovei’s class K of Definition 6.5.5.

Definition 7.1.10. E is the smallest class of analytic equivalence relations con-
taining the identity and closed under the operations of Borel reduction, count-
able union, Friedman-Stanley jump, and infinite product modulo any Fσ-ideal.



100 CHAPTER 7. ERGODICITY RESULTS

Note that the generating operations of the class E include the generating op-
erations of K, and therefore K ⊂ E. The inclusion between these two classes is
proper. For example E2 belongs to E, as the summable ideal is Fσ. On the other
hand, E2 has ergodicity properties with respect to every equivalence relation in
K by [12, Theorem 13.5.3]; in particular, E2 /∈ K.

Theorem 7.1.11. Let X be a zero-dimensional compact Polish space without
isolated point. Let I be an analytic σ-ideal of compact sets on X containing
all singletons. Then =I is F -generically ergodic for every equivalence relation
F ∈ E.

The proof uses the following abstract technical lemma.

Lemma 7.1.12. Let E be an analytic equivalence relation on a Polish space X.
If G0, G1 are mutually Cohen-generic filters over V and x0 ∈ V [G0], x1 ∈ V [G1]
are E-related points, then they are E-related to some point in the ground model.

Proof. It is possible to use a standard Kuratowski–Ulam argument. I will
provide a more general proof using the technologies developed earlier in the
book. Write P for the Cohen forcing. Suppose that p0, p1 ∈ P are conditions
and ẋ0, ẋ1 are P -names such that 〈p0, p1〉 
P×P ẋ0/Ġleft E ẋ1/Ġright. Then
〈P � p0, ẋ0〉 Ē 〈P � p1, ẋ1〉, and so ẋ0 is an E-pinned name on P � p0. However,
the Cohen forcing is c.c.c., therefore reasonable, and so all E-pinned names on
it must be trivial by Theorem 3.3.2. Thus, there must be x ∈ X in the ground
model such that 〈p0, p1〉 
P×P ẋ0/Ġleft E x̌. This completes the proof.

Proof of Theorem 7.1.11. Let C ⊂ X and D ⊂ Y be countable sets so that
2C = dom(=I). Let P be the poset of finite partial functions from C to 2
ordered by inclusion. In some generic extension, I will construct points xn ∈ 2C

for n ∈ ω such that

• each xn is P -generic over the ground model;

• the set {xn : n ∈ ω} ⊂ 2C is dense;

• the points xn for n ∈ ω are pairwise =I -related;

• if F ∈ E is a ground model coded analytic equivalence relation and an
F -class is represented in all models V [xn], then it is represented already
in the ground model.

This immediately implies the theorem. If F ∈ E is an analytic equivalence
relation on a Polish space Y and h : 2C → Y is a Borel homomorphism of E
to F , then the values h(xn) ∈ V [xn] for n ∈ ω come from the same F -class.
By the last item, there is a point y ∈ Y in the ground model which belongs to
this F -class as well. As a result, the preimage h−1[y]F ⊂ 2C is a ground model
coded analytic set which in some extension contains a dense set of Cohen reals,
therefore must be comeager as required.
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Let x0 ∈ 2C be a P -generic point over V ; work in the model V [x0]. I will
describe a poset Q adding a point x1 ∈ 2C which is also P -generic over V , =I -
related to x0, and such that for every equivalence relation F ∈ E on some Polish
space Y , every point y ∈ Y in the model V [x0] which has no F -equivalent in
V , there is a condition q ∈ Q which forces that V [ẋ1] contains no F -equivalent
of y. Then, force with a finite support product of countably many copies of the
poset Q over the model V [x0]. Denoting these copies with Qn for n > 0 and
their respective generic points with xn ∈ 2C , elementary density arguments will
show that the points {xn : n ∈ ω} have the required properties.

Work in the model V [x0], let Q be the poset of all triples q = 〈pq, Oq, Dq〉
where pq ∈ P , Oq ∈ O, and Dq ⊂ X is a finite set disjoint from Oq. The ordering
is defined by r ≤ q if pq ⊂ pr, Oq ⊂ Or, Dq ⊂ Dr, and (pr \ pq) � Oq ⊂ x0. Let
ẋ1 be the Q-name for the union of the first coordinates in the generic filter.

Claim 7.1.13. Q 
 ẋ1 ∈ 2C is a P -generic point over the ground model.

Proof. Let q ∈ Q be a condition and B ⊂ P an open dense subset in the ground
model. The genericity of the point x0 ∈ 2C implies that there is a finite fraction
p of x0 such that p rew pq ∈ B. Then, the condition 〈p rew pq, Oq, Dq〉 is
stronger than q in the poset Q and forces the point ẋ1 to meet the open dense
set B ⊂ P in the condition p rew pq.

Claim 7.1.14. Q 
 x̌0 =I ẋ1.

Proof. Let Ȯgen be the Q-name for the union of the second coordinates of condi-

tions in the generic filter. I will prove that Q 
 X \ Ȯgen ∈ I. This immediately
implies the claim.

Since I is an analytic σ-ideal of compact sets, it is in fact Gδ in the hy-
perspace K(X) by [14, Theorem 33.3]. Thus, I =

⋂
n Un for some open sets

Un ⊂ K(X). The sets Un may be selected downwards closed, and as is the case
for every downwards closed open subset of K(X), there are collections On of
open subsets of X such that K ∈ Un if and only if there is O ∈ On such that
K ⊂ O.

Now, let q ∈ Q be a condition and n ∈ ω. It will be enough to find a
condition r ≤ q and an open set O ∈ On such that Or ∪ O = X. Such a
condition r forces X \ Ȯgen ⊂ O, and a straighforward density argument leads

to the conclusion that X \ Ȯgen ∈
⋂
n Un = I.

To find the condition r and the open set O ∈ On, just observe that the finite
set Dq ⊂ X is in the ideal I by the assumptions, and so there is O ∈ On such
that Dq ⊂ O. Since the points in the set Dq are not isolated, a compactness
argument yields a clopen set O′ such that O′ ∪ O = X and Dq ∩ O′ = 0. The
condition r = 〈pq, Oq ∪O′, Dq〉 ≤ q together with the set O works.

Let Y be a Polish space and F and equivalence relation on Y , both in the
ground model. Let y ∈ Y be a point in V [x0] which has no F -equivalent in the
ground model. Let Fy,F be the collection of those sets O ∈ O such that y has
an F -equivalent in the model V [x0 � O].
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Claim 7.1.15. Fy,F is a filter of nonempty clopen subsets of the space X.

Proof. The empty set does not belong to F by the choice of the point y ∈ Y . F
is closed under taking supersets essentially by its definition. To show that it is
closed under intersections, suppose that O0, O1 ⊂ 2<ω are clopen sets such that
the F -class of y is represented both in V [x0 � O0] and V [x0 � O1]. Observe that
V [x0 � O0] and V [x0 � O1] are product Cohen-generic extensions of the model
V [x0 � (O0 ∩ O1)]. Apply Lemma 7.1.12 in the model V [x0 � (O0 ∩ O1)] to
conclude that the F -class of y is represented already there, and so O0 ∩O1 ∈ F
as desired.

A compactness argument shows that the filter Fy,F has a nonempty intersection.

Claim 7.1.16. Suppose that F ∈ E. Any condition q ∈ Q with Dq∩
⋂

Fy,F 6= 0
forces y to have no F -equivalent in the model V [ẋ1].

Proof. I will show that the class of all equivalence relations in the ground model
satisfying the statement of the claim is closed under the generating operations
of the class E.

The argument divides into a rather long list of cases, and one specific trick
will be used in many of them. Let q ∈ Q be an condition, and work in the
model V [x0 � Oq]. Define a poset Pq of all finite partial functions from C ∩Oq
to 2 extending pq � (C ∩ Oq), ordered by reverse inclusion. Let ẋ be the Pq-
name for the point in 2C obtained as the union of x0 � Oq with all functions
in the Pq-generic filter. As q 
Q ẋ1 is a Cohen-generic point over V extending
(x0 � Oq) rew pq, the usual Cohen forcing factorization arguments show that
q 
Q the equation ẋ = ẋ1 yields a Pq-generic filter over V [x0 � Oq]. This implies
the following:

(*) if p̄ ∈ Pq is a condition and φ(·) is an analytic formula with parameters in
the model V [x0 � Oq], and p̄ 
Pq φ(ẋ), then 〈pq ∪ p̄, Oq, Dq〉 
Q φ(ẋ1).

Now I am ready to tackle the discussion of the generating operations of the
class E.
Case 1. Regarding the Friedman–Stanley jump, assume that F is an analytic
equivalence relation on a Polish space Y for which the statement has been
verified. Consider the equivalence relation F+ on the space Y ω. Let y ∈ Y ω be
a point in V [x0] which has no F+-equivalent in the ground model. let q ∈ Q be
a condition with Dq ∩

⋂
Fy,F 6= 0, and let τ be a ground model P -name for an

element of the space Y ω. I will produce a condition r ≤ p and a number i ∈ ω
such that either r 
 (τ/ẋ)(i) /∈ [rng(y)]F or r 
 y̌(i) /∈ [rng(τ/ẋ1)]F . This will
complete the proof.
Case 1a. There is an number i ∈ ω such that y(i) has no F -equivalent in
the model V [x0 � Oq]. Consider the set Fy(i),F . Just as in Claim 7.1.15, the
collection {O \ Oq : O ∈ Fy(i),F } consists of nonempty clopen sets and has the
finite intersection property. A compactness argument then yields a point z′ ∈ X
in its intersection. Consider the condition r = 〈pq, Oq, Dq ∪ {z′}〉 ≤ q. By the
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assumption on the equivalence relation F , r 
 y(i) has no F -equivalent in the
model V [x1], in particular no F -equivalent in the set rng(τ/ẋ1).
Case 1b. If Case 1a fails, work in the model V [x0 � Oq] and consider the poset
Pq and its name ẋ ∈ 2C . There are three subcases:
Case 1ba. There is a condition p̄ ∈ Pq forcing τ/ẋ to have an F+-equivalent in
the model V [x0 � Oq]. Strengthening the condition p̄ if necessary, I may identify
this equivalent y′ ∈ Y ω. Since y′ F+ y fails, [rng(y)]E 6= [rng(y′)]E and so there
must be i ∈ ω such that either y(i) /∈ [rng(y′)]E or y′(i) /∈ [rng(y)]E . By (*)
above, the condition r = 〈pq ∪ p̄, Oq, Dq〉 ≤ q ∈ Q and the number i ∈ ω clearly
work as desired.
Case 1bb. There is a condition p̄ ∈ Pq forcing that there is some i ∈ ω such
that (τ/ẋ)(i) has no F -equivalent in the model V [x0 � Oq]. Strengthening p̄
if necessary, I may find a specific i ∈ ω satisfying this. In view of Case 1b
assumption and (*) above, the condition r = 〈pq ∪ p̄, Oq, Dq〉 ≤ q ∈ Q and the
number i ∈ ω work as required.
Case 1bc. If both Cases 1ba and 1bb fail, then there must be a point y′ ∈ Y
in the model V [x0 � Oq] and conditions p̄0, p̄1 ∈ Pq such that p̄0 
 y̌′ ∈ [τ/ẋ1]F
and p̄1 
 y̌′ /∈ [τ/ẋ1]F . (Otherwise, the set {y′ ∈ Y : Pq 
 y′ ∈ [τ/ẋ1]F }
contains only countably many F -equivalence classes by the c.c.c. of Pq, and
if y′′ ∈ Y ω visits exactly these F -classes then Pq 
 y̌′′ F+ τ/ẋ by the failure
of Case 1bb. This directs us to Case 1ba.) The treatment now divides into
two further subcases depending on whether y′ ∈ [rng(y)]F or not. Assume for
definiteness that the latter is the case. Strengthen the condition p̄0 ∈ Pq if
necessary to find a specific number i such that p̄0 
 (τ/ẋ)(i) F y′. In view of
(*), the condition r = 〈pq ∪ p̄0, Oq, Dq〉 ≤ q ∈ Q with the number i ∈ ω work as
required.
Case 2. Now move to the case in which the equivalence relation F is obtained
by a product modulo an Fσ-ideal of equivalence relations on which the claim
has been already verified. Suppose that J is an Fσ-ideal and use a theorem
of Mazur [20] to find a lower semicontinuous submeasure µ on ω such that
J = {a ⊂ ω : µ(a) < ∞}. Let {Fi : i ∈ ω} be a collection of equivalence
relations on the respective Polish spaces Yi for i ∈ ω in the ground model such
that the statement of the claim holds for each of them. Let Y =

∏
i Yi, let

F =
∏
i Fi modulo J , let y ∈ Y be a point in V [x0] which has no F -equivalent

in the ground model. Let q ∈ Q be a condition with Dq ∩
⋂
Fy,F 6= 0, let τ

be a ground model P -name for an element of the space Y , and let n ∈ ω. I
must produce a condition r ≤ q and a finite set b ⊂ ω such that µ(b) > n and
r 
 ∀i ∈ b̌ ¬(τ/ẋ1)(i) Fi y(i). The treatment divides into two cases.
Case 2a. The set a = {i ∈ ω : y(i) has no Fi-equivalent in the model V [x0 �
Oq]} is J-positive. Find a subset b of it of µ-mass > n. For every i ∈ b
consider the set Fy(i),Fi . Just as in Claim 7.1.15, the collection {O \ Oq :
O ∈ Fy(i),Fi} consists of nonempty clopen sets and has the finite intersection
property. A compactness argument then yields a point zi ∈ X in its intersection.
Then, the condition r = 〈pq, Oq, Dq ∪ {zi : i ∈ b}〉 ≤ q ∈ Q has the desired
properties. For every i ∈ b, Dr ∩

⋂
Fy,Fi 6= 0 and so by the assumption on

the equivalence relation Fi, r 
 yi has no Fi-equivalent in the model V [x1], in
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particular (τ/ẋ1)(i) is not equivalent to y(i).
Case 2b. If Case 1 fails, then a ∈ J and so µ(a) < m for some number m ∈ ω.
Work in the model V [x0 � Oq]. Consider the poset Pq with its name ẋ ∈ 2C .
There are three subcases:
Case 2ba. There is a condition p̄ ∈ Pq forcing τ/ẋ to have an F -equivalent
in the model V [x0 � Oq]. Strengthening the condition p̄ if necessary, I may
identify this equivalent y′ as well as the number k ∈ ω such that p̄ 
 µ({i ∈ ω :
¬(τ/ẋ)(i) Fi y

′(i)}) < k. Since y′ F y fails, there is a finite set b′ ⊂ ω of such
that µ(b′) > n + k and ∀i ∈ a ¬y(i) Fi y

′(i). Strengthening the condition p̄
further I can identify the set b = {i ∈ b′ : (τ/ẋ)(i) Fi y

′(i)}; by the subadditivity
of the submeasure µ, it has to be the case that µ(b) > n. Now (*) above shows
that the condition r = 〈pq ∪ p̄, Oq, Dq〉 ≤ q ∈ Q and the set b have the required
properties.
Case 2bb. There is a condition p̄ ∈ Pq forcing the set {i ∈ ω : (τ/ẋ)(i) has
no Fi-equivalent in the model V [x0 � Oq]} is in the ideal J . Strengthening the
condition p̄ if necessary, I can identify a finite subset b′ of this set such that
µ(b′) > n+m. The set b = b′ \ a must have µ(b) > n. Again, (*) above shows
that the condition r = 〈pq ∪ p′, Oq, Dq〉 ≤ q ∈ Q and the set b have the required
properties.
Case 2bc. If both Cases 2ba and 2bb fail, then there must be conditions
p̄0, p̄1 ∈ Pq, a finite set b′ ⊂ ω with µ(b′) > 2n, and functions y0, y1 with domain
b′ such that for every i ∈ b′, p̄0 
 (τ/ẋi) Fi y0(i), p̄1 
 (τ/ẋi) Fi y1(i), and
¬y0(i) Fi y1(i). One of the sets {i ∈ b′ : ¬y(i) Fi y0(i)}, {i ∈ b′ : ¬y(i) Fi y1(i)}
must have µ-mass greater than n as they together cover the set b′. Suppose
for definiteness it is the former, and call it b. Then (*) above implies that
the condition r = 〈pq ∪ p′, Oq, Dq〉 ≤ q ∈ Q and the set b have the required
properties.
Case 3. Now, move to the case where F is obtained as a countable union
F =

⋃
n Fn of analytic equivalence relations on some Polish space Y for which

the statement of the claim has already been verified. Here, observe that Fy,Fn ⊂
Fy,F : if O ⊂ X is a clopen set and y ∈ Y has an Fn-equivalent in the model
V [x0 � O], then this same point is in fact an F -equivalent of y as Fn ⊂ F .
Thus, if q ∈ Q is a condition with Dq ∩

⋂
Fy,F 6= 0, then for every n ∈ ω,

Dq ∩
⋂
Fy,Fn 6= 0. By the assumption on the equivalence relations Fn, the

condition q = 〈0, 0, {z}〉 forces that y has no Fn-equivalent in the model V [ẋ1],
and since F =

⋃
n Fn, it also cannot have an F -equivalent there.

Case 4. Finally, move to the case where the equivalence relation F is Borel
reducible to an equivalence relation F ′ on a Polish space Y ′ via some Borel
reduction h : Y → Y ′, and the statement of the claim holds for F ′. Observe
that Fy,F = Fh(y),F ′ : if O ⊂ X is a clopen set and y ∈ Y has an F -equivalent
y0 ∈ V [x0 � O] then h(y0) is an F ′-equivalent of h(y) in the same model. On the
other hand, if h(y) has an F ′-equivalent y′0 ∈ Y ′ in the model V [x0 � O], then
by the Mostowski absoluteness between the models V [x0 � O] and V [x0], the
model V [x0 � O] must contain a point y0 ∈ Y such that h(y0) F ′ y′0, and then
y0 is an F -equivalent of y in the model V [x0 � O] as h is a reduction. Thus, if
q ∈ Q is a condition such that Dq ∩

⋂
Fy,F 6= 0, then also Dq ∩

⋂
Fy,F ′ 6= 0. By



7.1. THE CATEGORY CASE 105

the claim applied to the equivalence relation F ′, the condition q ∈ Q then forces
the model V [ẋ1] to contain no F ′-equivalent of h(y). Thus, the model cannot
contain any F -equivalent of y, since its h-image would be an F ′-equivalent of
h(y).

This completes the verification of the desired properties of the poset Q and
the proof of the theorem.

Corollary 7.1.17. Let J be the asymptotic density zero ideal on ω. Then =J

is F -generically ergodic for every equivalence relation F ∈ E.

This greatly strengthens the standard result: =J is not Borel reducible to
EKσ .

Proof. Let π : ω → 2<ω be any bijection sending each interval [2n, 2n+1) ⊂ ω
to the set 2n ⊂ 2<ω. Let χ : 2<ω → 2ω be any injection such that χ(t) ∈ [t]
holds for every t ∈ 2<ω. Let φ be the usual product measure on 2ω, let I be
the σ-ideal of φ-null subsets of 2ω, let C = rng(χ), and let K be the ideal on C
consisting of the sets a ⊂ C such that the closure of a belongs to I. In view of
Theorem 7.1.11, it is enough to show that if b ⊂ C is any set then π−1χ−1b ∈ J .
In other words, the ideal K becomes a subset of J under the identification given
by π−1χ−1.

Suppose that a ⊂ 2<ω is a set such that π−1a /∈ J . This means that there
is a positive real ε > 0 and infinitely many numbers ni ∈ ω for i ∈ ω such that
a ∩ 2ni has cardinality at least ε2ni . A standard measure theoretic argument
shows that the set B = {x ∈ 2ω : ∃∞i x � ni ∈ a} has product mass at least ε,
and it is a subset of the closure of χ′′b. This completes the proof.

Corollary 7.1.18. Suppose that I is a nonprincipal analytic σ-ideal of compact
sets on a zero-dimensional compact space without isolated points. Then =I does
not belong to Kanovei’s class K.

Proof. The generating operations of Kanovei’s class K are included in the gen-
erating operations of the class E, so K ⊂ E. Thus, not only =I does not belong
to K, it is even F -generically ergodic for every equivalence relation F ∈ K by
Theorem 7.1.11.

Thus, the equivalence relations of the form =I for a σ-ideal I of compact
sets on a compact space seem to be enormously complicated, and quite high in
the Borel reducibility order. The last theorem of this section shows that among
equivalence relations of this form, there are still further distinctions.

Theorem 7.1.19. Let X,Y be compact Polish spaces without isolated points
and µ a Borel probability measure on Y . Let I be the σ-ideal of meager sets on
X and J the σ-ideal of µ-null sets. Then =I is =J -generically ergodic.

Note that the opposite ergodicity does not hold. If, for example, X = Y = 2ω

and µ is the usual product measure on 2ω, then J ⊂ I on compact subsets of X
and therefore the identity is a continuous homomorphism of =J to =I in which
preimages of =I -classes are meager. This raises an obvious question.
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Question 7.1.20. Let I be the σ-ideal of meager sets and J the σ-ideal of
product null sets on 2ω. Is =J Borel reducible to =I?

Proof of Theorem 7.1.19. Let C ⊂ X and D ⊂ Y be countable sets so that
2C = dom(=I) and 2D = dom(=J). Let P be the poset of finite partial functions
from C to 2 ordered by inclusion. In some generic extension, I will construct
points xn ∈ 2C for n ∈ ω such that

• each xn is P -generic over the ground model;

• the set {xn : n ∈ ω} ⊂ 2C is dense;

• the points xn for n ∈ ω are pairwise =I -related;

• if a =J class is represented in all models V [xn], then it is represented
already in the ground model.

This immediately implies the theorem. If h : 2C → 2D is a Borel homomor-
phism of =I to =J , then the values h(xn) ∈ V [xn] for n ∈ ω come from the
same =J -class. By the last item, there is a point y ∈ 2D in the ground model
which belongs to this =J -class as well. As a result, the preimage h−1[y]=J ⊂ 2C

is a ground model coded analytic set which in some extension cotains a dense
set of Cohen reals, therefore must be comeager as required.

Let x0 ∈ 2C be a P -generic point over the ground model, and y ∈ 2D∩V [x0]
be a point which is not =J -related to any element in the ground model. It will
be enough to produce a forcing adding a point x1 ∈ 2C which is =I -related to
x0, P -generic over the ground model, and such that y has no =J -equivalent in
the model V [x1].

Let OX ,OY be countable bases of the topologies on X,Y closed under finite
unions and intersections such that the boundaries of sets in them do not intersect
the countable sets C,D. The treatment divides into two cases.
Case 1. There is ε > 0 such that for no set U ∈ OY of µ-mass > 1−ε there is a
ground model point z ∈ 2D such that y � U =J z � U . In this case, let Q be the
poset of all pairs q = 〈pq, Oq〉 such that pq ∈ P,Oq ∈ OX , and there is δq > ε/2
such that there is no set U ∈ OY of µ-mass > 1− δq and no point z ∈ 2D in the
model V [x0 � Oq] such that y � U =J z � U . The ordering is defined by r ≤ q
if pq ⊂ pr and Oq ⊂ Or and (pr \ pq) � Oq ⊂ x0. Let ẋ1 be the Q-name for the
union of the first coordinates of conditions in the generic filter. I will verify the
requisite properties of the name ẋ1 one by one.

Claim 7.1.21. Q 
 ẋ1 ∈ 2C is a P -generic point over the ground model.

Proof. Let q ∈ Q be a condition and B ⊂ P an open dense subset in the ground
model. The genericity of the point x0 ∈ 2C implies that there is a finite fraction
p of x0 such that p rew pq ∈ B. Then, the condition 〈p rew pq, Oq〉 is stronger
than q in the poset Q and forces the point ẋ1 to meet the open dense set B ⊂ P
in the condition p rew pq.

Claim 7.1.22. Q 
 x̌0 =I ẋ1.
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Proof. Let Ȯgen be the Q-name for the union of the second coordinates of con-

ditions in the generic filter. I will prove that Q forces Ȯgen ⊂ X to be open
dense. This immediately implies the claim. Look at the closure of the set
{c ∈ C : x0(c) 6= x1(c)} in the space X. To show that this is nowhere dense,
it is enough to show that it is a subset of the union of the nowhere dense set
X \ Ȯgen and the countable set C. Indeed, suppose that z ∈ Ȯgen is a point
in this closure. Then there is a condition q ∈ Q in the generic filter such that
z ∈ Oq. This condition forces the set {c ∈ Oq ∩ C : x0(c) 6= ẋ1(c)} to be finite,
included in the set dom(pq). Thus, the point z must be an element of this finite
set and therefore belongs to C.

Towards the proof of density of Ȯgen , let q ∈ Q and O ∈ OX be a nonempty
open set. I must produce a condition r ≤ q such that Or∩O 6= 0. Clearly, I may
assume that Oq ∩O = 0. Let δ be some real number such that ε/2 < δ < δq and
let n ∈ ω be so large that δq(1 − 1/n) > δ. The purpose of the choice of such
number n is to make sure that whenever 〈Z, η〉 is a probability measure space
and B ⊂ n×Z is a Borel set whose vertical sections have ν-mass at least 1− δ,
then at least ν-mass 1− δq many elements of Z belong to at least two vertical
sections of the set B. This is proved by a straightforward Fubini argument.
Now, let {Oi : i ∈ n} be pairwise disjoint nonempty subsets of O in OX ; I will
show that for some i ∈ n, the pair ri = 〈pq, Oq ∪ Oi〉 is a condition in Q as
witnessed by δ. Then r ≤ q will be the desired condition.

Suppose that ri is not a condition in the poset Q as witnessed by δ for
any i ∈ n. This means that there are open sets Ui ∈ OY and points yi ∈ 2D

such that µ(Ui) > δ, yi ∈ V [x0 � Oq ∪ Oi], and y � Ui =J yi � Ui. Now, if
i 6= j then the functions yi � Ui ∩ Uj and yj � Ui ∩ Uj are =J -equivalent to
y � Ui ∩Uj , and by Lemma 7.1.12 they must be =J -equivalent to some function
yi,j : D∩Ui∩Uj → 2 in the model V [x0 � Oq]. Working in the model V [x0 � Oq],
the choice of the number n shows that the set U =

⋃
i6=j∈n(Ui ∩Uj) has µ-mass

> 1− δq, and y � U is =J -related to some boolean combination of the functions
yi,j : i 6= j ∈ n. This, however, contradicts the definition of the number δq and

concludes the proof of density of the open set Ȯgen .

Claim 7.1.23. Q 
 y̌ has no =J -equivalent in the model V [ẋ1].

Proof. Towards a contradiction, suppose that q ∈ Q is a condition and τ is a P -
name such that q 
 y̌ =J τ/ẋ1. Strengthening the condition q if necessary, I may
find an open set U ∈ OY with µ(U) > 1−ε/4 such that q 
 (τ/ẋ1) � U = y̌ � U .
Case 1a. If there are conditions p ∈ P consistent with (x0 � Oq) rew pq and
d ∈ D∩U such that p 
P τ(d) = 1−y(d), then the condition r = 〈p∪pq, Oq〉 ≤ q
forces in Q that (τ/ẋ1)(ď) 6= y̌(ď). This contradicts the choice of q, τ , and U .
Case 1b. If Case 1a fails, then for every d ∈ D ∩ U there is exactly one value
b ∈ 2 such that there is a condition p ∈ P consistent with (x0 � Oq) rew pq such
that p 
P τ(ď) = b̌, and this value is equal to y(d). Thus, the function y � U
can be reconstructed in the model V [x0 � Oq], which contradicts the definition
of the poset Q.
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Case 2. If Case 1 fails, consider the collection F of sets O ∈ OX such that the
point y ∈ 2D has =J -equivalent in the model V [x0 � O].

Claim 7.1.24. F is a filter of nonempty sets in OX .

This is proved exactly like Claim 7.1.15. Use a compactness argument to find a
point z ∈ X such that z ∈

⋂
O∈F Ō. Let Q be the poset of all pairs q = 〈pq, Oq〉

such that pq ∈ P , Oq ∈ OX , and z /∈ Ōq. The ordering is defined by r ≤ q if
pq ⊂ pr, Oq ⊂ Or and (pr \ pq) � Oq ⊂ x0. Let ẋ1 be the Q-name for the union
of the first coordinates of the conditions in the generic filter. I will verify the
requisite properties of the name ẋ1 one by one.

Claim 7.1.25. Q 
 ẋ1 ∈ 2C is a P -generic point over the ground model.

Proof. Let q ∈ Q be a condition and B ⊂ P an open dense subset in the ground
model. The genericity of the point x0 ∈ 2C implies that there is a finite fraction
p of x0 such that p rew pq ∈ B. Then, the condition 〈p rew pq, Oq〉 is stronger
than q in the poset Q and forces the point ẋ1 to meet the open dense set B ⊂ P
in the condition p rew pq.

Claim 7.1.26. Q 
 ẋ1 =I x̌0.

Proof. First argue that Q forces the union of the second coordinates of the
conditions in the generic filter to be equal to X \ {z}. To see this, note that
whenever q ∈ Q is a condition and O ∈ OX is an open set whose closure does
not contain the guiding point z ∈ X, then 〈pq, Oq ∪O〉 ≤ q is again a condition,
and use a straightforward density argument. It follows that z is forced to be
the only accumulation point of the set B = {c ∈ C : x0(c) 6= ẋ1(c)}: if z̄ ∈ X is
another point, then there is a basis set O containing z̄ such that z /∈ Ō, there is
a condition q ∈ Q in the generic filter such that O ⊂ Oq, and then the set B∩O
is a subset of the finite set {c ∈ dom(pq) : pq(c) 6= x0(c)}, therefore finite and
has no accumulation points. In particular, z̄ cannot be an accumulation point
of the set B.

All in all, the set B must be a sequence converging to z and so its closure is
nowhere dense in the space X.

Claim 7.1.27. Q 
 y̌ has no =J -equivalent in the model V [ẋ1].

Proof. Towards a contradiction, suppose that q ∈ Q is a condition and τ is a
P -name such that q 
 y̌ =J τ/ẋ1. Work in the model V [x0 � Oq]. Consider
the poset P ′ of finite partial functions from the set C \ Oq. Let ẋ ∈ 2C be the
P ′-name for the union of (x0 � Oq) rew pq and all conditions in the P ′-generic
filter. Thus, q ∈ Q forces that the equation ẋ = ẋ1 defines a point generic for
P ′ over the model V [x0 � Oq]. It will be enough to show that P ′ 
 τ/ẋ1 6=J y̌.

Observe that for every m ∈ ω there is an open set Um ∈ OY and ym ∈ 2D

in the ground model and a condition pm ∈ P ′ such that µ(Um) > 1− 2−m and
pm 
P ′ (τ/ẋ) � Um =J y̌m � Um. To find Um, ym and pm, just let x1 ∈ 2C
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be a Q-generic point over the model V [x0] consistent with the condition q, use
the case assumption to find a set U ∈ OY of mass > 1 − 2−m such that y � U
has a =J -equivalent in the ground model, find an open set Um ⊂ U in OY of
mass 1 − 2m such that y � Um = (τ/x1) � Um (this is possible by the initial
contradictory assumption of this proof), let ym ∈ V be point such that such
that y � Um =J ym � Um, and let pm be the finite fraction of x1 which forces in
P ′ that yU � U = (τ/ẋ) � Um.

The treatment now breaks into two subcases.
Case 2a. There is m ∈ ω as above and a condition p ∈ P ′ such that p 
 ¬τ =J

ym � Um. Then either of the conditions 〈pm rew pq, Oq〉 or 〈p rew pq, Oq〉 below
q ∈ Q forces ¬τ =J y̌ depending on whether ym � Um =J y or not. This is a
contradiction to the choice of q and τ .
Case 2b. If Case 2a fails, then for each U as above, then P ′ 
 (τ/ẋ) � Um =J

ym � Um. Let y′ ∈ 2D be any point in the model V [x0 � Oq] such that for every
m ∈ ω, y′ � Um \

⋃
k∈m Uk = ym. The assumptions immediately imply that

P ′ 
 τ/ẋ =J y̌
′. Therefore, q ∈ Q forces τ/ẋ1 =J y̌

′ and so it must be the case
that y′ =J y. Since y′ ∈ V [x0 � Oq], this contradicts the assumption that y has
no =J -equivalent in the model V [x0 � Oq].

7.2 The measure case

In this section, I will prove a number of results regarding µ-ergodicity for various
natural Borel probability measures. It appears that great many of such results
depend on the concentration of measure phenomenon explained for example in
[21]. I will start with this group of theorems.

Definition 7.2.1. A collection {〈Xn, dn, µn, δn, εn〉 : n ∈ ω} has concentration
of measure if

1. Xn is a finite set, dn is a metric on Xn, µn is a probability measure on
Xn, δn, εn > 0 are real numbers;

2.
∑
n εn <∞ and for every n ∈ ω, 7δn+1 < δn;

3. for every set A ⊂ Xn of µ-mass at least δn, the εn-neighborhood of A in
the metric dn has µ-mass at least 1/2.

As a matter of notation, if {〈Xn, dn, µn, δn, εn〉 : n ∈ ω} is a collection with
concentration of measure, I will write X =

∏
nXn (so X is a compact space

with the product topology), µ =
∏
n µn (so µ is a Borel probability measure on

X), d for the sum of the metrics dn (so d is an extended value metric), and E
for the equivalence relation on X connecting points with finite d-distance (so E
is a Kσ equivalence relation on X).
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Theorem 7.2.2. If {〈Xn, dn, µn, δn, εn〉 : n ∈ ω} is a collection with concentra-
tion of measure, then E is F -µ-ergodic for every proper-trim equivalence relation
F .

The main ingredient of the proof is the following purely measure-theoretic con-
sequence of concentration of measure:

Lemma 7.2.3. For every Borel µ-positive set B ⊂ X and every ε > 0 there is a
µ-positive Borel set B′ ⊂ B such that whenever C0, C1 ⊂ B′ are Borel µ-positive
sets with µ(B′ \ (C0 ∪ C1)) = 0, then there are points x ∈ C0 and y ∈ C1 with
d(x, y) < ε.

Proof. Given a number n ∈ ω, call a set A ⊂ Xn connected if the graph on
A relating points of dn-distance ≤ 2εn has a single connectedness component.
The following claim is central:

Claim 7.2.4. Whenever n ∈ ω and A ⊂ Xn is a set of µn-mass > 4δn then
there is a connected set A′ ⊂ A with µ(A′) > µ(A)− δn.

Proof. Let H be the graph on the set A connecting points of dn-distance < 2εn.
I claim that H has a connected component of µn-mass at least δ.

If this failed, it would be possible to divide the set A into two pieces A0, A1

respecting the connectedness equivalence such that both have mass at least δ.
Then, the εn-neighborhoods of these two pieces have µn-mass greater than 1/2
and so they intersect. It follows that there are points k ∈ A0 and l ∈ A1 whose
dn-distance is at most 2εn, contradicting the assumption that the partition of
the set A respects the connectedness classes of the graph H.

Now, let A′ ⊂ A be a connected component of µn-mass at least δ. I claim
that in fact µ(A′) > µ(A) − δ. To see this, use the concentration of measure
assumption again to see that the 2εn-neighborhood of A′ contains all points of
Xn with an exception of µn-mass δn. Also, by the definition of connectedness,
A′ contains all points of the set A which belong to the 2εn-neighborhood of A′.
this completes the proof.

Let Tini be the tree of all finite sequences t such that for every n ∈ dom(t),
t(n) ∈ Xn. For a node t ∈ Tini, write [t] for the set of those infinite branches of
T which extend t. For a tree T ⊂ Tini, its trunk is the longest common initial
segment of all its infinite branches. Say that a tree T ⊂ Tini is good if for all
nodes t ∈ T extending the trunk,

• the relative µ-mass of [T ] in [t] is > 4δn;

• the set {u ∈ X|t| : tau ∈ T} ⊂ X|t| is connected.

I will show that every Borel set B ⊂ X contains all branches of some good
tree, and if T is a good tree with trunk of length m such that ε < 2

∑
m≤n εn,

then the set B′ = [T ] satisfies the conclusion of the proposition. This will
complete the proof.
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To find the good tree inside the Borel set B ⊂ X, first find a tree U ⊂ Tini
such that [U ] is a µ-positive subset of B. Use the Lebesgue density theorem to
find a node t ∈ Tini such that [U ] has relative mass > 1/2 in [t], and 1/2 > 7δ|t|.
Remove all nodes ufrom U which are either incompatible with t, or such that
t ⊆ u and [U ] has relative mass ≤ 7δ|u| in [u]. In the resulting tree U ′, whenever
u ∈ U ′ is a node extending t, the relative mass of [U ′] in [u] is greater than
6δ|u|. By Claim 7.2.4, for each node u ∈ U ′ extending t it is possible to remove
fewer than µn-mass δn many immediate successors of u in such a way that the
remaining set of immediate successors is connected. The tree U ′′ obtained in
this way is good.

Now suppose that T is a good tree such that writing m for the length of its
trunk, ε < 2

∑
m≤n εn. I claim that the set B′ = [T ] works as required in the

theorem.

Claim 7.2.5. For every number n ≥ m, whenever u, v ∈ T are nodes of length
n, then there is a sequence 〈ui : i ∈ j〉 such that u0 = u, uj−1 = v, and any two
successive elements of the sequence have d-distance < 2

∑
m≤l<n εl.

Proof. By induction on n. For n = m the statement is trivial. Suppose it is
known for some n ∈ ω, and u, v are some nodes of T of length n + 1. Let
u′ = u � n, v′ = v � n, and u′i : i ∈ j is a walk of nodes of length n obtained
from the induction hypothesis. For each i ∈ j let ai = {z ∈ Xn : (u′i)

az ∈ T} ⊂
Xn. These are sets of µn-mass > δn, and so by the concentration of measure
assumption, for each i ∈ j − 1 the sets ai and ai+1 contain points which are
at dn-distance < 2εn. The sets ai ⊂ Xn are also connected, and so there is a
number k ∈ ω, successive nonempty intervals bi ⊂ k for i ∈ j exhausting all of
k, and a sequence 〈zl : l ∈ k〉 of points in Xn so that

• if l ∈ bi then zl ∈ ai;

• (u′)az0 = u, (v′)azk−1 = v;

• successive points on the sequence are at dn-distance < 2εn.

The sequence 〈ul : l ∈ k〉 defined by ul = (u′i)
azl whenever l ∈ bi then is as

required in the induction step.

Now, suppose that C0, C1 ⊂ [T ] are Borel µ-positive sets such that µ([T ] \
(C0 ∪ C1)) = 0. I must produce points x0 ∈ C0 and x1 ∈ C1 of d-distance
< ε. First, use the Lebesgue density theorem to find a number n ∈ ω and nodes
u0, u1 ∈ T of length n such that C0 has relative mass > 2δn in [u0] and C1 has
relative mass > 2δn in [u1]. A finite walk argument from Claim 7.2.5 shows
that that such nodes u0, u1 can be found within d-distance < 2

∑
m≤l<n εl from

each other. Find trees U0, U1 ⊂ T such that the sets [U0] ⊂ C0, [U1] ⊂ C1, [U0]
have relative µ-mass > 2δn in [u0] and [u1] respectively. By induction on k ≥ n
build nodes vk0 ∈ U0 and vk1 ∈ U1 so that

• u0 = vn0 , u1 = vn1 , vk+1
0 is an immediate successor of vk0 , and vk+1

1 is an
immediate successor of vk1 ;
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• the respective relative mass of [U0], [U1] in [vk0 ], [vk0 ] is > 2δk;

• d(vk0 , v
k
1 ) < 2

∑
m≤l<k εl.

Once this is done, then the points x0 =
⋃
k v

k
0 ∈ C0 and x1 =

⋃
k v

k
1 ∈ C1 are

as required by the third item above.
The induction itself again uses the concentration of measure assumptions.

Suppose that the nodes vk0 ∈ U0, v
k
1 ∈ U1 have been constructed. The sets

a0 = {i ∈ Xk : U0 has relative µ-mass > 2δk+1 in [(vk0 )ai]} ⊂ Xk and a1 = {i ∈
Xk : U1 has relative µ-mass > 2δk+1 in [(vk1 )ai]} ⊂ Xk have both µk-mass > δk
by a Fubini argument. By the concentration of measure assumption, there are
points i0 ∈ a0 and i1 ∈ a1 such that dk(i0, i1) < 2εk. The nodes vk+1

0 = (vk0 )ai0
and vk+1

1 = (vk1 )ai1 complete the induction step.

Proof of Theorem 7.2.2. Let P be the usual random forcing associated with the
Borel probability measure µ, i.e. the poset of Borel µ-positive sets ordered by
inclusion. Let ẋgen be the usual P -name for a generic element of the space X. In
view of Lemma 7.0.16 it is enough to show that ẋgen is a nontrivial E-trim name.
For conditions p0, p1 ∈ P I must produce filters G0, G1 ⊂ P separately generic
over V so that p0 ∈ G0, p1 ∈ G1, ẋgen/G0 E ẋgen/G1, and V [G0] ∩ V [G1] = V .
To simplify the notation, assume p0 = p1 =the largest element of P .

Let Tini be the tree of all finite sequences t such that for every n ∈ dom(t),
t(n) ∈ Xn. For t, u ∈ Tini with |t| ≥ |u| write t rew u for the sequence obtained
from t by rewriting its initial segment of length |u| with u. Let Q be the poset
of all pairs q = 〈Bq, Cq〉 where B,C ∈ P are µ-positive Borel sets and there
are finite sequences t, u ∈ Tini such that d(t, u) < 1, all elements of Bq contain
t as an initial segment, all elements of Cq contain u as an initial segment, and
B = {x rew t : x ∈ C}, or equivalently C = {x rew u : x ∈ B}. The ordering is
coordinatewise inclusion. If H ⊂ Q is a generic filter, just let G0 = {Bq : q ∈ H}
and G1 = {Bq ⊕ sq : q ∈ H}. I will now verify the requisite properties of this
set-up one by one.

Claim 7.2.6. Q forces both G0, G1 to be P -generic filters over the ground model.

Proof. Below any condition q ∈ Q, Bq can be strengthened arbitrarily within
the poset P ; transporting the result to the Cq coordinate, one again obtains a
condition in Q which is stronger than q. A straightforward density argument
then shows that G0 is forced to be a generic filter over V . The case of G1 is
symmetric.

Claim 7.2.7. Q forces ẋgen/G0 is E-related to ẋgen/G1 and not E-related to
any ground model point of X.

Proof. From the definition of Q it is clear that for every n ∈ ω, the dn-distance
of ẋgen/G0(n) and ẋgen/G1(n)) is not greater than εn. This proves the first
sentence. The second sentence follows from the simple fact that E-classes are
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µ-null; therefore, no ground model E-class can contain the random generic point
ẋgen/G0 by Claim 7.2.6.

Finally, the most difficult part, which uses the concentration of measure as-
sumptions:

Claim 7.2.8. Q 
 V [G0] ∩ V [G1] = V .

Proof. Suppose that q ∈ Q, q = 〈B,C〉 is a condition and σ, τ are P -names
for sets of ordinals such that q 
 σ/G0 = τ/G1. I have to find a condition
below Bq in the poset Q which forces σ to belong to the ground model. Find

finite sequences t, u ∈ Tini witnessing that q ∈ Q, and let ε = 1−d(t,u)
2 . Find a

condition B′ ⊂ B in the poset P which exemplifies Lemma 7.2.3 for ε. I claim
that this condition works.

Suppose for contradiction that there is an ordinal α such that B′ does not
decide the statement α̌ ∈ σ. By the c.c.c. of the measure algebra, this means
that there is a partition of B′ into Borel µ-positive sets D0, D1 ⊂ B′ such that
D0 
 α̌ ∈ σ and D1 
 α̌ /∈ σ. Let C0 ⊂ D0 and C1 ⊂ D1 be the respective sets
of Lebesgue density points. By the choice of the set B′q, there are points x0 ∈ C0

and x1 ∈ C1 such that d(x0, x1) < ε. Let t0 ⊂ x0 and t1 ⊂ x1 be finite sequences
of the same length say m > |t|, such that D0 has relative density > 1/2 in [t0]
and D1 has relative density > 1/2 in [t1]. Let C ′ = {y ∈ C : y rew t0 ∈ D0 and
y rew t1 ∈ D1}; this is a Borel subset of C of positive µ-mass. Find a condition
C ′′ ⊂ C ′ such that all of its elements start with some fixed sequence u′′ ∈ 2m

and such that it decides the statement α ∈ τ ; for definiteness say that it decides
it in the affirmative. Let B′′ = {x ∈ D1 : t1 ⊂ x and x rew u′′ ∈ C ′′}. The
definitions show that the condition 〈B′′, C ′′〉 is in Q, it is stronger than q, and
it forces α̌ ∈ σ/G0∆τ/G1. This is a contradiction.

Corollary 7.2.9. Let J be the summable ideal on ω: a ∈ J if
∑
n∈a

1
n+1 <∞.

Then =2
J is F -ν-ergodic for every proper-trim equivalence F where ν is the usual

product probability measure on 2ω.

Proof. Choose positive real numbers εm and δm for m ∈ ω so that
∑
m εm <∞

and δm > 16δm+1. Let Im for m ∈ ω be a sequence of consecutive intervals of

natural numbers so that for all m > 0, and 2 exp(
−ε2m+1

8
∑
n>max(Im)

1
n2

) < δm+1. This

is possible as
∑
n

1
n2 < ∞. The sequence 〈Xm, dm, µm, εm, δm : n ∈ ω〉 where

Xm = 2Im , µm is the usual product measure on Xn, and dm(x, y) =
∑
{ 1n :

n ∈ Im and x(n) 6= y(n)} has the concentration of measure by the computation
in [21, Theorem 4.3.19]. The corollary immediately follows from Theorem 7.2.2
and the observation that ν =

∏
m µm under the natural identifiaction of

∏
mXm

and 2ω.
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The generic ergodicity results for equivalence relations =I for a σ-ideal I
of compact sets on a compact Polish space X have also ν-ergodic counterparts,
where ν is the usual product probability measure on the domain of =I . Compare
the following with Theorem 7.1.11. Recall the class E of equivalence relations
of Definition 7.1.10.

Theorem 7.2.10. Let X be a zero-dimensional compact Polish space without
isolated points. Let I be an analytic σ-ideal of compact sets on X containing
all singletons. Then =I is ν-generically ergodic for every equivalence relation
F ∈ E.

The proof uses repeatedly the following variation of Lemma 7.1.12.

Lemma 7.2.11. Let E be an analytic equivalence relation on a Polish space
X. Let z0, z1 ∈ 2ω be mutually random-generic filters over V . If x0 ∈ V [z0] and
x1 ∈ V [z1] are E-related points in the space X, then they are E-related to some
point in the ground model.

Proof. The difficulty compared to Lemma 7.1.12 is that the points z0, z1 ∈ 2ω

are not product-generic. I have to resort to a Fubini-style argument. First, I
will specify the version of random forcing I will use. Let µ be the usual product
Borel probability measure on 2ω, and ν its Fubini product with itself, a Borel
probability measure on 2ω × 2ω. Let I be the σ-ideal of µ-null sets on 2ω, and
let J be the σ-ideal on ν-null sets on 2ω × 2ω. Thus, the poset PJ of all Borel
J-positive subsets of 2ω × 2ω adds a pair 〈ż0, ż1〉 of mutually random generic
points in 2ω.

Suppose that some Borel set B ∈ PJ forces ẋ0 ∈ V [ż0], ẋ1 ∈ V [ż1] are E-
related points. By the usual Borel reading of names for c.c.c. posets, thinning
out the condition B if necessary, I may assume that there are Borel functions
f0 : 2ω → X and f1 : 2ω → X such that B 
 ẋ0 = ḟ0(ż0) and ẋ1 = ḟ1(ż1).
The analytic set C ⊂ B of all pairs 〈y0, y1〉 ∈ B such that f0(y0) E f1(y1) is J-
positive since B forces the generic pair to belong into C. Removing a ν-null set
if necessary I may assume that the set C is Borel and all its vertical sections are
either empty or non-µ-null. Use the Fubini theorem to find a point y ∈ 2ω such
that the horizontal section Cy has positive µ-mass. The definition of the set C
shows that f1(y) E f0(x) for every x ∈ Cy. Let D = {〈x, z〉 ∈ C : x ∈ Cy};
use the Fubini theorem again to argue that the Borel set D ⊂ C is ν-positive.
Finally, D 
 ḟ0(ż0) E f1(y) and so D 
 ẋ0 has an E-equivalent in the ground
model.

Proof of Theorem 7.2.10. Let C ⊂ X be a countable dense set so that 2C =
dom(=I). Let ν be the usual product measure on the space 2C . Let P be
the partial ordering of Borel subset of 2C of positive ν-mass. In some forcing
extension, I will find points xn ∈ 2C for n ∈ ω so that

• each xn is P -generic over the ground model;

• every condition in P coded in the ground model contains a point xn for
some n ∈ ω;
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• the points xn are pairwise =I -related;

• if F ∈ E is an equivalence relation in the ground model and an F -class
has representatives in each model V [xn] for n ∈ ω, then the class has a
representative in the ground model.

This immediately implies the theorem. If F ∈ E is an equivalence relation
on some Polish space Y and h : 2C → Y is a Borel homomorphism, then the
F -equivalence class of h(xn) is represented in every model V [xn]. By the last
item above, it has a representative y ∈ Y in the ground model. The preimage
h−1[y]F ⊂ 2C must then be a set of full ν-mass as otherwise there would be a
number n ∈ ω with xn /∈ h−1[y]F by the second item, contradicting the choice
of y.

Let x0 ∈ 2C be a P -generic point over V ; work in the model V [x0]. I will
describe a poset Q adding a point x1 ∈ 2C which is also P -generic over V , =I -
related to x0, and such that for every equivalence relation F ∈ E on some Polish
space Y , every point y ∈ Y in the model V [x0] which has no F -equivalent in
V , there is a condition q ∈ Q which forces that V [ẋ1] contains no F -equivalent
of y. Then, force with a finite support product of countably many copies of the
poset Q over the model V [x0]. Denoting these copies with Qn for n > 0 and
their respective generic points with xn ∈ 2C , elementary density arguments will
show that the points {xn : n ∈ ω} have the required properties.

Let Q be the partial order of certain tuples q = 〈tq, Oq, pq, Dq〉 such that
tq : C∩Oq → 2 is a finite partial function, Oq is a clopen set of X, and Dq ⊂ X is
a finite set disjoint from Oq. The nature of pq will be specified in a moment. For
each such triple, I will need a good amount of notation. Let Xq = 2C∩(Oq∪Dq),
let νq be the usual product Borel probability measure on Xq, let Pq be the
poset of Borel νq-positive subsets of Xq coded in the ground model, ordered by
inclusion, and let xq = (x0 � C ∩ (Oq ∪ Dq)) rew tq ∈ Xq. The point xq, as
a finite alteration of x0 � C ∩ (Oq ∪ Dq) is Pq-generic over the ground model.
Let Xq = 2C\(Oq∪Dq), let νq be the usual Borel probability measure on Xq, let
P q be the poset of Borel νq-positive subsets of Xq coded in V [xq], ordered by
inclusion, and let xq = x0 � C \ (Oq ∪Dq) ∈ Xq. Thus, xq is P q-generic point
over the model V [xq]. The final requirement on the condition q is that pq ∈ P q.
For each q ∈ Q, write [q] = {xq} × pq ⊂ 2C . The ordering on the poset Q is
defined by r ≤ q if tq ⊂ tr, Oq ⊂ Or, Dq ⊂ Dr, tr � Oq = tq, and [r] ⊂ [q].

I will start the analysis of the posetQ with a technical claim. Call a condition
q ∈ Q regular if x0 rew tq ∈ [q].

Claim 7.2.12. The set of regular conditions is dense in Q. Whenever q ∈ Q
is a regular condition and D ⊂ X is a finite set disjoint from Oq, there is a
condition r ≤ q with D ⊂ Dr.

Proof. For the first sentence, let q ∈ Q be an arbitrary condition; I must produce
a regular condition r ≤ q. The closure of the condition pq under finite changes
is a Borel subset of Xq of full νq-mass, coded in the model V [xq] and therefore
contains xq. It follows that there is a finite partial function tr : C → 2 such that
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tr � Oq ∪Dq = tq and x0 rew tr ∈ [q]. Let Or ⊂ X be any clopen set containing
Oq as as well as the domain of tr as a subset, disjoint from the set Dq. The
condition r ≤ q will be of the form r = 〈tr, Or, pr, Dq〉 for suitable pr ∈ Pr.
Just let pr = {x ∈ Xr : (x0 � (Or ∪Dq)) rew tr ∪ x ∈ pq}. The set pr ⊂ Xr is
Borel, in the model V [x0 � Or]. Also, it contains the sequence x0 � C \Or ∪Dq,
which is Pr-generic over the model V [x0 � Or]. It follows that νr(pr) > 0. The
condition r = 〈tr, Dr, pr, Dq〉 works as required.

For the second sentence, let q ∈ Q be a regular condition and let D ⊂ X
be a finite set disjoint from Oq. To produce the required condition r ≤ q with
D ⊂ Dr, let tr = tq, Or = Oq, Dr = Dq ∪ D, and pr = {x ∈ Xr : xar x ∈ pq}.
I claim that r = 〈tr, Or, pr, Dr〉 ≤ q is a condition in the poset Q. The only
nontrivial point is to check pr ∈ P r. Now, pr ⊂ Xr is a Borel set coded in V [xr].
To verify that νr(pr) > 0, just observe that the regularity of the condition q
implies that the point x0 � (C\(Or∪Dr)) belongs to pr. This point is P r-generic
over the model V [xr], and therefore νr(pr) > 0 follows.

Let ẋ1 by the Q-name for the element of 2C obtained as the unique element of
the intersection of all sets [q] ⊂ 2C for q in the generic filter.

Claim 7.2.13. Q 
 ẋ1 is P -generic over the ground model. For every condition
q ∈ Q, q 
 ẋ1 � C \ (Oq ∪Dq) ∈ Xq is P q-generic over the model V [xq].

Proof. For the first sentence, suppose B ⊂ 2C is a Borel set of full ν-mass coded
in the ground model and q ∈ Q is a condition; I will produce a condition r ≤ q
such that [r] ⊂ B. To this end, use the Fubini theorem to show that the Borel
set Bq = {x ∈ Xq : {x′ ∈ Xq : x ∪ x′ ∈ B} has full νq-mass} has full νq-mass.
As Bq coded in the ground model, xq ∈ Bq. Let Bq = {x ∈ Xq : xaq x ∈ B}, let
r = 〈tq, Oq, pq ∩Bq, Dq〉 and observe that r ≤ q and [r] ⊂ B as required.

The second sentence is proved in the same way.

Claim 7.2.14. Q 
 x̌0 =I ẋ1.

Proof. Let Ȯgen be the Q-name for the union of the second coordinates of condi-

tions in the generic filter. I will prove that Q 
 X \ Ȯgen ∈ I. This immediately
implies the claim.

Since I is an analytic σ-ideal of compact sets, it is in fact Gδ in the hy-
perspace K(X) by [14, Theorem 33.3]. Thus, I =

⋂
n Un for some open sets

Un ⊂ K(X). The sets Un may be selected downwards closed, and as is the case
for every downwards closed open subset of K(X), there are collections On of
open subsets of X such that K ∈ Un if and only if there is O ∈ On such that
K ⊂ O.

Now, let q ∈ Q be a regular condition and n ∈ ω. It will be enough to find
a condition r ≤ q and an open set O ∈ On such that Or ∪ O = X. Such a
condition r forces X \ Ȯgen ⊂ O, and a straighforward density argument leads

to the conclusion that X \ Ȯgen ∈
⋂
n Un = I.

To find the condition r and the open set O ∈ On, just observe that the finite
set Dq ⊂ X is in the ideal I by the assumptions, and so there is O ∈ On such
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that Dq ⊂ O. Since the points in the set Dq are not isolated, a compactness
argument yields a clopen set O′ such that O′ ∪ O = X and Dq ∩ O′ = 0.
Set tr = tq, Dr = Dq, Or = O′ ∪ Oq, xr = x0 � (Or ∪ Dr) rew tq, and
pr = {x ∈ Xr : xar x ∈ pq}. The condition r = 〈tr, Or, pr, Dr〉 ≤ q together with
the set O works.

Let Y be a Polish space and F and equivalence relation on Y , both in the
ground model. Let y ∈ Y be a point in V [x0] which has no F -equivalent in the
ground model. Let Fy,F be the collection of those clopen subsets O ⊂ X such
that y has an F -equivalent in the model V [x0 � O].

Claim 7.2.15. Fy,F is a filter of nonempty clopen subsets of the space X.

Proof. The same as Claim 7.1.15 with Lemma 7.2.11 replacing Lemma 7.1.12.
The main point is the standard observation in the ground model that if C0, C1 ⊂
C are any sets then P 
 ẋgen � C0 \D and ẋgen � C1 \D are mutually random
points over the model V [ẋgen � D], where D = C0 ∩ C1 and ẋgen ∈ 2C is the
usual P -name for the generic point.

A compactness argument shows that the filter Fy,F has a nonempty intersection.

Claim 7.2.16. Suppose that F ∈ E. Any condition q ∈ Q with Dq∩
⋂

Fy,F 6= 0
forces y to have no F -equivalent in the model V [ẋ1].

Proof. I will show that the class of all equivalence relations in the ground model
satisfying the statement of the claim is closed under the generating operations of
the class E. The following observations and notation will be useful in all cases.
Let q ∈ Q be a condition. In the model V [xq], the poset P q adds an element
ẋqgen ∈ Xq. The point xq ∪ ẋqgen ∈ 2C is P -generic over V , and so whenever τ
is a P -name in V , it makes sense to write τ q for the P q-name τ/(xq ∪ ẋqgen).
Now, in the model V [x0], the condition q ∈ Q forces ẋ1 � C \ (Oq ∪Dq) to be
P q-generic over V [xq] by Claim 7.2.13, meeting the condition pq. It follows that
if φ is an analytic formula with parameters in V [xq] and τ is a P -name in V for
an element of a Polish space and pq 
P q φ(τ q), then q 
Q φ(τ/ẋ1).
Case 1. Regarding the Friedman–Stanley jump, assume that F is an analytic
equivalence relation on a Polish space Y for which the statement has been
verified. Consider the equivalence relation F+ on the space Y ω. Let y ∈ Y ω be
a point in V [x0] which has no F+-equivalent in the ground model. Let q be a
regular condition such thatDq∩

⋂
Fy,F 6= 0, and let τ be a ground model P -name

for an element of the space Y ω. I will produce a condition r ≤ q and a number
i ∈ ω such that either r 
 (τ/ẋ1)(i) /∈ [rng(y)]F or r 
 y̌(i) /∈ [rng(τ/ẋ1)]F .
This will complete the proof.
Case 1a. There is a number i ∈ ω such that y(i) has no F -equivalent in the
model V [xq]. Consider the set Fy(i),F . Just as in Claim 7.1.15, the collection
{O \ Oq : O ∈ Fy(i),F } consists of nonempty clopen sets and has the finite
intersection property. A compactness argument then yields a point z ∈ X in its
intersection. Use Claim 7.2.12 to find a condition r ≤ q with z ∈ Dr. By the
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assumption on the equivalence relation F , r 
 y(i) has no F -equivalent in the
model V [x1], in particular no F -equivalent in the set rng(τ/ẋ1).
Case 1b. If Case 1a fails, work in the model V [xq]. There are three subcases:
Case 1ba. There is a condition p ≤ pq in the poset P q forcing τ q to have an F+-
equivalent in the model V [x0 � Oq]. Strengthening the condition p if necessary, I
may identify this equivalent y′ ∈ Y ω. Since y′ F+ y fails, [rng(y)]E 6= [rng(y′)]E
and so there must be i ∈ ω such that either y(i) /∈ [rng(y′)]E or y′(i) /∈ [rng(y)]E .
The condition r = 〈tq, Oq, p,Dq〉 ≤ q and the number i ∈ ω clearly work as
desired.
Case 1bb. There is a condition p ≤ pq in P q forcing that there is some
i ∈ ω such that τ q(i) has no F -equivalent in the model V [xq]. Strengthening
p if necessary, I may find a specific i ∈ ω satisfying this. In view of Case 1b
assumption, the condition r = 〈tq, Oq, p,Dq〉 ≤ q and the number i ∈ ω work as
required.
Case 1bc. If both Cases 1ba and 1bb fail, then there must be a point y′ ∈ Y in
the model V [xq] and conditions p′, p′′ ≤ pq in P q such that p′ 
 y̌′ ∈ [τ q]F and
p′′ 
 y̌′ /∈ [τ q]F . (Otherwise, the set {y′ ∈ Y : pq 
P q τ q F y′} contains only
countably many F -equivalence classes by the c.c.c. of P q, and if y′′ ∈ Y ω visits
exactly these F -classes then pq 
P q y̌′′ F+ τ q by the failure of Case 1bb. This
directs us to Case 1ba.) The treatment now divides into two further subcases
depending on whether y′ ∈ [rng(y)]F or not. Assume for definiteness that the
latter is the case. Strengthen the condition p if necessary to find a specific
number i such that p 
P q (τ q)(i) F y′. The condition r = 〈tq, Oq, p,Dq〉 ≤ q
with the number i ∈ ω work as required.
Case 2. Now move to the case in which the equivalence relation F is obtained
by a product modulo an Fσ-ideal of equivalence relations on which the claim
has been already verified. Suppose that J is an Fσ-ideal and use a theorem
of Mazur [20] to find a lower semicontinuous submeasure µ on ω such that
J = {a ⊂ ω : µ(a) < ∞}. Let {Fi : i ∈ ω} be a collection of equivalence
relations on the respective Polish spaces Yi for i ∈ ω in the ground model such
that the statement of the claim holds for each of them. Let Y =

∏
i Yi, let

F =
∏
i Fi modulo J , let y ∈ Y be a point in V [x0] which has no F -equivalent

in the ground model. Let q ∈ Q be a regular condition with Dq ∩
⋂
Fy,F 6= 0,

let τ be a ground model P -name for an element of the space Y , and let n ∈ ω.
I must produce a condition r ≤ q and a finite set b ⊂ ω such that µ(b) > n and
r 
 ∀i ∈ b̌ ¬(τ/ẋ1)(i) Fi y(i). The treatment divides into two cases.
Case 2a. The set a = {i ∈ ω : y(i) has no Fi-equivalent in the model V [xq]} is
J-positive. Find a subset b of it of µ-mass > n. For every i ∈ b consider the set
Fy(i),Fi . Just as in Claim 7.1.15, the collection {O\Oq : O ∈ Fy(i),Fi} consists of
nonempty clopen sets and has the finite intersection property. A compactness
argument then yields a point zi ∈ X in its intersection. Use Claim 7.2.12 to
find a condition r ≤ q with {zi : i ∈ b} ⊂ Dr; this condition works as required.
For every i ∈ b, Dr ∩

⋂
Fy(i),Fi is nonempty, containing at least the point zi.

By the assumption on the equivalence relation Fi, r 
 yi has no Fi-equivalent
in the model V [x1], in particular (τ/ẋ1)(i) is not equivalent to y(i).
Case 2b. If Case 2a fails, then a ∈ J and so µ(a) < m for some number m ∈ ω.
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Work in the model V [xq]. There are three subcases:

Case 2ba. There is a condition p ≤ pq in P q forcing τ q to have an F -equivalent
in the model V [xq]. Strengthening the condition p if necessary, I may identify
this equivalent y′ as well as the number k ∈ ω such that p 
 µ({i ∈ ω :
¬τ q(i) Fi y′(i)}) < k. Since y′ F y fails, there is a finite set b′ ⊂ ω of such that
µ(b′) > n + k and ∀i ∈ a ¬y(i) Fi y

′(i). Strengthening the condition p further
I can identify the set b = {i ∈ b′ : τ q(i) Fi y

′(i)}; by the subadditivity of the
submeasure µ, it has to be the case that µ(b) > n. It is not difficult to see that
the condition r = 〈tq, Oq, p,Dq〉 and the set b have the required properties.

Case 2bb. There is a condition p ≤ pq in P q forcing the set {i ∈ ω : τ q(i)
has no Fi-equivalent in the model V [xq]} to be in the ideal J . Strengthening
the condition p if necessary, I can identify a finite subset b′ of this set such that
µ(b′) > n + m. The set b = b′ \ a must have µ(b) > n. It is not difficult to
see that the condition r = 〈tq, Oq, p,Dq〉 ≤ q and the set b have the required
properties.

Case 2bc. If both Cases 2ba and 2bb fail, then there must be conditions
p′, p′′ ∈ P q, a finite set b′ ⊂ ω with µ(b′) > 2n, and functions y′, y′′ with domain
b′ such that for every i ∈ b′, p′ 
 τ q(i) Fi y

′(i), p′′ 
 τ q(i) Fi y
′′(i), and

¬y′(i) Fi y′′(i). One of the sets {i ∈ b′ : ¬y(i) Fi y
′(i)}, {i ∈ b′ : ¬y(i) Fi y

′′(i)}
must have µ-mass greater than n as they together cover the set b′. Suppose
for definiteness it is the former, and call it b. It is not difficult to see that the
condition r = 〈tq, Oq, p,Dq〉 ≤ q and the set b have the required properties.

Case 3. Now, move to the case where F is obtained as a countable union
F =

⋃
n Fn of analytic equivalence relations on some Polish space Y for which

the statement of the claim has already been verified. Here, observe that Fy,Fn ⊂
Fy,F : if O ⊂ X is a clopen set and y ∈ Y has an Fn-equivalent in the model
V [xq], then this same point is in fact an F -equivalent of y as Fn ⊂ F . Thus, if q ∈
Q is any condition with Dq∩

⋂
Fy,F 6= 0, then for every n ∈ ω, Dq∩

⋂
Fy,Fn 6= 0.

By the assumption on the equivalence relations Fn, the condition q ∈ Q forces
that y has no Fn-equivalent in the model V [ẋ1], and since F =

⋃
n Fn, it also

cannot have an F -equivalent there.

Case 4. Finally, move to the case where the equivalence relation F is Borel
reducible to an equivalence relation F ′ on a Polish space Y ′ via some Borel
reduction h : Y → Y ′, and the statement of the claim holds for F ′. Observe
that Fy,F = Fh(y),F ′ : if O ⊂ X is a clopen set and y ∈ Y has an F -equivalent
y0 ∈ V [x0 � O] then h(y0) is an F ′-equivalent of h(y) in the same model. On
the other hand, if h(y) has an F ′-equivalent y′0 ∈ Y ′ in the model V [x0 � O],
then by the Mostowski absoluteness between the models V [x0 � O] and V [x0],
the model V [x0 � O] must contain a point y0 ∈ Y such that h(y0) F ′ y′0, and
then y0 is an F -equivalent of y in the model V [x0 � O] as h is a reduction. Thus,
if q ∈ Q is any condition with Dq ∩

⋂
Fy,F 6= 0, then Dq ∩

⋂
Fy,F ′ 6= 0. By

the assumption on the equivalence relation F ′, the condition q ∈ Q then forces
the model V [ẋ1] to contain no F ′-equivalent of h(y). Thus, the model cannot
contain any F -equivalent of y, since its h-image would be an F ′-equivalent of
h(y).
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This completes the proof of the required properties of the poset Q and the
proof of the theorem.

Corollary 7.2.17. Let J be the ideal of sets of asymptotic density zero on ω.
The equivalence relation =J is F -ν-ergodic for every equivalence relation F ∈ E,
where ν is the usual product Borel probability measure on 2ω.

Proof. The argument follows word by word the proof of Corollary 7.1.17, with
a reference to Theorem 7.1.11 replaced by Theorem 7.2.10.

Now it is time to produce some negative results. I will show how the failure
of concentration of measure can lead to the existence of nonstabilizing homo-
morphisms. The central tool is the following easy computation:

Lemma 7.2.18. For every i ∈ ω and every ε > 0 there is a number n ∈ ω and
sets a, b ⊂ 2n of the same relative size > 1−ε

2 each, such that for every x ∈ a
and y ∈ b the set {m ∈ n : x(m) 6= y(m)} contains at least i many elements.

Proof. Fix i and ε. Elementary computation shows that there is n ∈ ω such
that the size of the set {a ⊂ n : ||a| − n

2 | < i + 1} is less than ε2n. Let
a = {x ∈ 2n : the set {m ∈ n : x(m) = 1} contains at most n

2 − i many
elements} and b = {x ∈ 2n : the set {m ∈ n : x(m) = 1} contains at least n

2 + 1
many elements}. This works.

As the first example of the failure of ergodicity in measure, consider the case
of general summable ideals. Let w : ω → R+ be a function, and write Jw for
the ideal {a ⊂ ω :

∑
n∈a w(a) <∞} and =w for the equivalence =2

Jw
.

Example 7.2.19. There is a function w : ω → R+ tending to 0 and a Borel
homomorphism f : 2ω → 2ω of =w to E0 such that preimages of E0-classes have
zero ν-mass.

Proof. Choose consecutive intervals {Ii : i ∈ ω} such that ni = |Ii| works for i
and ε = 2−i as in Lemma 7.2.18. Let w be the function defined by w(j) = 1

i+1
if j ∈ Ii. I claim that the function w works as desired.

To construct the homomorphism, for every i ∈ ω let ai, bi ⊂ 2Ii be the sets
witnessing the validity of the claim. Let B = {x ∈ 2ω : ∀∞i ∈ ω x � Ii ∈ ai∪bi};
this is an Fσ-set of full ν-mass. Let h : B → 2ω be the continuous function
defined by h(x)(i) = 0 if x � Ii ∈ ai. The choice of the sets ai, bi implies that
h is a homomorphism of =w� B to E0 such that preimages of singletons (and
therefore E0-classes) are ν-null. Now just use Lemma 2.1.5 to extend h to a
total Borel homomorphism of =w to E0.

Example 7.2.20. There is a Tsirelson ideal J on ω such that there is a Borel
homomorphism from =J to E0 such that preimages of E0-classes are ν-null.

Here, the Tsirelson ideals are certain Fσ-ideals associated with Tsirelson
submeasures on ω. I will define a certain special subclass of them. Let α > 0 be a
real number and f : ω → R+ be a function. In a typical case, the function f will
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converge to 0 and never increase. By induction on n ∈ ω define submeasures µn
on ω by setting µ0(a) = supi∈a f(i), and µn+1(a) = sup{µn(a), α

∑
b∈~b µn(b)}

where the variable ~b ranges over all sequences 〈b0, b1, . . . bj〉 of finite subsets of
a such that j < min(b0) ≤ max(b0) < min(b1) ≤ max(b1) < . . . . In the end, let
the submeasure µ be the supremum of µn for n ∈ ω. Some computations are
necessary to verify that µn is really a lower semicontinuous submeasure on ω.
The ideal J = {a ⊂ ω : limm µ(a \m) = 0} turns out to be an Fσ P-ideal [4]. I
will show that for positive real number α > 0 there is a function f converging
to 0 such that the derived ideal J is has the nonstabilizing homomorphism as
in Example 7.2.20.

Proof. By induction on i ∈ ω choose intervals Ii ⊂ ω such that max(Ii) >
min(Ii+1) and such that min(Ii) > i/α there are sets ai, bi ⊂ 2Ii of the same

relative size ≥ 1−2−i
2 such that for any elements x ∈ ai, y ∈ bi the set {m ∈

Ii : x(m) 6= y(m)} has size at least i/α. This is easily possible by Lemma 7.2.18.
Now, consider the function f defined by f(m) = 1/i form ∈ (max(Ii−1),max(Ii)]
and let µ be the derived submeasure and J the derived Tsirelson ideal. Observe
that with this choice of the function f , for any i ∈ ω and elements x ∈ ai, y ∈ bi
the set {m ∈ Ii : x(m) 6= y(m)} has µ-mass at least 1, since it has µ1-mass at
least 1.

The remainder of the proof is the same as in the previous example. Let
B = {x ∈ 2ω : ∀∞i ∈ ω x � Ii ∈ ai ∪ bi}; this is an Fσ-set of full ν-mass. Let
h : B → 2ω be the continuous function defined by h(x)(i) = 0 if x � Ii ∈ ai. The
choice of the sets ai, bi implies that h is a homomorphism of =J� B to E0 such
that preimages of singletons (and therefore E0-classes) are ν-null. Now just use
Lemma 2.1.5 to extend h to a total Borel homomorphism of =J to E0.

Question 7.2.21. Is there a Tsirelson ideal J such that the equivalence relation
=J is ν-F -generically ergodic for every proper-trim equivalence relation F?

As another example, recall the eventually different ideal. Let C = {〈m,n〉 ∈
ω2 : n ∈ m} and let J be the ideal on C generated by those subsets of C whose
vertical sections are bounded in size.

Example 7.2.22. Let J be the eventually different ideal. There is a Borel
homomorphism from =J to E0 such that preimages of E0-classes are ν-null.

Proof. Pick real numbers εi > 0 for i ∈ ω such that
∏
i(1 − εi) > 0. Find

pairwise distinct numbers ni ∈ ω which exemplify Lemma 7.2.18 for εi and find
sets ai, bi ∈ 2ni as in that lemma. Choose an arbitrary bijection πi : Cni → ni,
extend it naturally to a bijection πi : 2Cni → 2ni , and write āi = π−1i ai and
b̄i = π−1i bi Let B = {x ∈ 2C : ∀∞i ∈ ω x � Cni ∈ āi ∪ b̄i}. This is an Fσ-set of
full ν-mass. Let h : B → 2ω be the continuous function defined by h(x)(i) = 0
if x � Cni ∈ āi. This is a Borel homomorphism of =J� B to E0 such that
f -preimages of singletons and E0-classes are ν-null. Now just use Lemma 2.1.5
to extend h to a total Borel homomorphism of =w to E0.



122 CHAPTER 7. ERGODICITY RESULTS



Chapter 8

Other reducibility
invariants

8.1 Connections

Let E be an equivalence relation on a Polish space X, and let V [G0], V [G1] be
generic extensions containing respective E-related points x0, x1 ∈ X. How far
from the models V [G0], V [G1] does one have to go to find a common represen-
tative of the class [x0]E? The answer to this question yields a good number of
nonreducibility arguments. Their common feature is that they do not translate
into ergodicity proofs. Therefore, they are useful for proving nonreducibility
where many nontrivial homomorphisms are present. As one application, I pro-
vide an (modulo the forcing method) exceptionally simple and conceptual proof
that E1 is not Borel reducible to any orbit equivalence relation. As another
application, I provide nonreducibility results complementary to the theorems of
Chapter 7.

Definition 8.1.1. Let E be an analytic equivalence relation on a Polish space
X. Let P be a Suslin forcing. Say that E has P -σ-connections if in every forcing
extension, if {V [Hn] : n ∈ ω} are extensions of V containing respective points
xn ∈ X which are pairwise E-related, and V [H0] is a P -extension of V , then
in some further forcing extension there is a point x ∈ X such that for every
n ∈ ω, x E xn and x belongs to some P -extension of V [Hn]. Say that E has
P -connections if the same conclusion holds in the case of merely two extensions
V [H0] and V [H1]

I will first verify that the notions defined above are really invariant under Borel
reducibility.

Theorem 8.1.2. If E,F are analytic equivalence relations on respective Polish
spaces X,Y , E ≤wB F , and F has P -σ-connections, then E also has P -σ-
connections. Similarly for P -connections.

123
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Proof. Suppose that a ⊂ X is a countable set and h : X → Y is a Borel function
which is a reduction of E to X on the set X\[a]E . Let V [Hn] for n ∈ ω be models
containing respective points xn ∈ X which are pairwise E-connected. If they
are E-connected to some point x ∈ a, then the definition of P -σ-connections
is automatically satisfied with that point x. If they are not E-connected to
any point in a, then by the Shoenfield absoluteness their values h(xn) ∈ Y are
F -connected. Since F satisfies P -σ-connections, there is a point y ∈ Y which
is F -connected to all of them and such that it is in some P -extension of each
model V [Hn].

By the Shoenfield absoluteness between V [y] and V [H0][y], there must be a
point x ∈ V [y]∩X such that x is not E-related to any point in a and h(x) F y–
such a point, namely x0, exists in the model V [H0][y]. It is now obvious that
the point x exemplifies the definition of P -σ-connections for E.

The connection invariant is mildly interesting already in the case of the
trivial forcing P .

Theorem 8.1.3. If P is the trivial forcing and E is an analytic equivalence rela-
tion with countable classes, then E has P -σ-connections. E1 has P -connections.

Proof. Suppose first that E has countable classes. If M is any transitive model
of ZFC containing the code for E, it also satisfies that all classes of E are
countable by the Mostowski absoluteness and the fact that the ideal of countable
sets is Π1

1 on Σ1
1. Thus, if x ∈ M is a point in dom(E), then M contains a

point y ∈ dom(E)ω which enumerates the equivalence class [x]E in M . By the
Mostowski absoluteness for the model M again, y enumerates the equivalence
class of [x]E even in V . Thus, the model M contains all E-equivalents of all of
its points. Thus, if V [Hn] for n ∈ ω are generic extensions containing respective
E-related points xn, then in fact xn ∈ V [Hm] for every n,m ∈ ω. This proves
the first sentence.

For the case of E1, write X = (2ω)ω = dom(E1). Any two models V [G0],
V [G1] containing the respective representatives x0, x1 ∈ X of the same E1-class
share a common tail of the sequences x0, x1 and so also a common representative
of their E1 class.

Question 8.1.4. Let P be the trivial forcing. Are the following equivalent for
a Borel equivalence relation E?

1. E has P -σ-connections;

2. E is essentially countable.

Question 8.1.5. Let P be the trivial forcing. Are the following equivalent for
a Borel equivalence relation E?

1. E has P -connections;

2. E ≤B E1 × E∞.
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In the way of applications of this invariant, I will start with results that show
key conceptual distinctions between the orbit equivalence relations and E1.

Theorem 8.1.6. Let E be an orbit equivalence relation of a continuous Polish
group action. Then E has Cohen-σ-connections.

Proof. Let Gy X be the action generating E. Let V [Hn] for n ∈ ω be generic
extensions of V containing respective points xn ∈ X which are E-related. Let
V [K] be a forcing extension containing all of them; in particular, for each n
V [G] contains an element gn ∈ G such that gn · x0 = xn. Let g ∈ G be a
PG-generic point over V [K] and let x = g · x0. It will be enough to show that
x belongs to a PG-extension of every model V [Hn].

Indeed, fix a number n ∈ ω and consider the point hn = g · g−1n ∈ G. Since
the meager ideal on the group G is invariant under multiplication, the point
hn is PG-generic over V [K]. Thus, it is also PG-generic over the smaller model
V [Hn]. Also, x ∈ V [Hn][hn], since x = hn · xn by the definition of x and hn.
This concludes the proof.

Theorem 8.1.7. E1 does not have P -σ-connections for any Suslin forcing.

Proof. Write X = (2ω)ω = dom(E1). Let 〈yn : n ∈ ω〉 ∈ X be a sequence added
by the full support countable product of Sacks forcing over the ground model.
Let xn ∈ X be the sequence defined by xn(m) = ym if m > n, and xn(m) = 0
if m ≤ n. Thus, the models V [xn] for every n ∈ ω are obtained by the full
support countable product of Sacks forcing as well, and the points xn for n ∈ ω
are pairwise E1-related .

Now suppose that x ∈ X is a point in some further generic extension which
is E1 equivalent to all xn. I will show that there is n ∈ ω such that x does not
belong to any c.c.c. extension of V [xn]. Just choose any number n ∈ ω such
that x(n) = yn. By the product forcing theorem applied in V to the product
of Sacks forcing, the point yn is generic over V [xn] for the Sacks forcing in the
sense of V . This poset is nowhere c.c.c. in V [xn] since it is nowhere c.c.c. in
V and ℵ1 is preserved between V and V [xn]. Thus, the point yn as well as x
cannot belong to any c.c.c. extension of V [xn].

Theorem 8.1.8. Eω1 has Hechler connections, but not Cohen connections.

Proof. Write X = (2ω)ω×ω = dom(Eω1 ). For the first sentence, let V [H] be
a generic extension of V containing smaller extensions V [G0], V [G1] which in
turn contain Eω1 -related points x0, x1 ∈ X. Let g ∈ ωω be a function such
that ∀i∀j > g(i) x0(i, j) = x1(i, j). Let f ∈ ωω be a Hechler-generic function
over V [H] which pointwise dominates g. As Hechler forcing is Suslin c.c.c., f
is Hechler generic over both models V [G0] and V [G1] by Fact 2.3.8. Let x ∈ X
be the point defined by x(i, j) = x0(i, j) if j > f(i), and x(i, j) = 0 otherwise.
Clearly, x is Eω1 -related to both x0, x1 and it belongs to both models V [G0][f ]
and V [G1][f ]. This proves the Hechler connections of Eω1 .

The second sentence is more difficult. Let f ∈ ωω be a Hechler-generic real
over the ground model. Let y ∈ (2ω)ω×ω×2 be a point generic over V [f ] for the
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random algebra with the usual product measure on (2ω)ω×ω×2. Let x0 ∈ X be
defined by x0(i, j) = y(i, j, 0) and let x1 ∈ X be defined by x1(i, j) = y(i, j, 0)
except when f(i) = j when I set x1(i, j) = x1(i, j, 1). It is clear that x0 E

ω
1 x1. I

will show that in no forcing extension there is x ∈ X which is Eω1 -related to x0, x1
and V [x0][x], V [x1][x] are Cohen extensions of V [x0] and V [x1] respectively.

To this end, first use standard Fubini-type considerations in V [f ] to show
that both x0, x1 are random-generic over V [f ] and for every i, j ∈ ω, y(i, j, 1) is
random-generic over V [f ][x0]. Since random forcing is c.c.c. and Suslin, x0, x1
are random-generic over V and for every i, j ∈ ω, y(i, j, 1) is random-generic over
V [x0] by Fact 2.3.8. Since the random forcing is bounding, it follows that f ∈ ωω
is still dominating over V [x0]. Now, suppose that x ∈ X is a point such that
x E1 x0 and V [x0][x] is a Cohen extension of V [x0]. Let g ∈ ωω in V [x0][x] be a
function such that for every i, for every j > g(i), x(i, j) = x0(i, j). Since Cohen
forcing does not add a dominating real, there is i ∈ ω such that f(i) > g(i) and
so x(i, f(i)) = x0(i, f(i)) = y(i, f(i), 0). Thus, y(i, f(i), 0) ∈ V [x] ⊂ V [x1][x],
it is a point random generic over V [x1], and therefore V [x1][x] is not a Cohen
extension of V [x1].

Corollary 8.1.9. E1 is not Borel reducible to an orbit equivalence of a Polish
group action.

Proof. The previous theorems yield two different ways of proving this. The
easier way will note that E1 does not have Suslin σ-connections (Theorem 8.1.7)
while every orbit equivalence relation has Cohen σ-connections (Theorem 8.1.6).
Theorem 8.1.2 then completes the argument.

The more difficult way will note that if E1 was Borel reducible to an orbit
equivalence relation E, then Eω1 would be reducible to Eω. Now Eω is still an
orbit equivalence relation, generated by the product of the original action, and
therefore has Cohen connections. On the other hand, Eω1 does not have Cohen
connections by Theorem 8.1.8.

Theorem 8.1.10. Let J be the branch ideal on 2<ω or one of the ideals Jα for
α ∈ ω1. Then =J does not have P -connections for any Suslin poset P .

Proof. Let X = 22
<ω

. Let Q be the poset of finite partial functions from 2<ω to
2. Let x0 ∈ X be a Q-generic point over V . Let G ⊂ Coll(ω, c) be a filter generic
over V [x0]. Working in V [x0][H], let z ∈ 2ω be any point coding a wellorder
of ordertype ωV1 , and let a ⊂ ω be an infinite set such that for every function
f ∈ ωω in V [x0] there is n ∈ a such that f(n) is smaller than the next element
of a past n. Let x1 ∈ X be defined by x1(t) = 1 − x0(t) if there is n ∈ a such
that t = z � n and x1(t) = x0(t) otherwise. I claim that x0, x1 ∈ X violate the
definition of P -connections for any c.c.c. Suslin poset P .

First of all, x0 =J x1 since the two points of X differ only on sequences along
the branch z ∈ 2ω. Second, observe that x1 ∈ X is Q-generic over V . For every
open dense set D ⊂ Q in the ground model and every n ∈ ω there is f(n) ∈ ω
such that the condition x0 � 2<f(n) belongs to D even when one disturbs it
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arbitrarily on 2<n–this follows from the genericity of the point x0 ∈ X. The
function f belongs to V [x0] and so there is a number n ∈ a such that f(n) < m
where m is the next element of a past n. Then x1 � 2<f(n) ∈ D, proving the
Q-genericity of x1 over the ground model.

I claim that in no extension there is a point x ∈ X which is =J -related to
both x0, x1 and at the same time c.c.c.-generic over both models V [x0], V [x1].
Since the branch ideal is a subset of the ideals Jα, it is enough to verify this
for a fixed ordinal α ∈ ω1 and the ideal J = Jα. Let x be any point =J -
related to both x0, x1. Let b0 = {t ∈ 2<ω : x(t) 6= x0(t)} ∈ V [x0][x] and
b1 = {t ∈ 2<ω : x(t) 6= x1(t)} ∈ V [x1][x]. Since the sets b0, b1 are in the ideal
Jα, their respective traces tr(b0), tr(b1) are countable and by the Shoenfield
absoluteness, all of their elements belong to the respective models V [x0][x] and
V [x1][x]. Now observe that z ∈ tr(b0)∪tr(b1). In the opposite case, there would
be n ∈ a such that z � n /∈ b0 ∪ b1. Since x0(z � n) 6= x1(z � n), this contradicts
the choice of the sets b0, b1.

In conclusion, either z ∈ V [x0][x] or z ∈ V [x1][x]. This means that one of
these models must collapse ℵV1 to ℵ0, and impossibility for a c.c.c. extension of
a Cohen extension.

Theorem 8.1.11. Let I be an analytic σ-ideal of compact sets on a compact
metrizable space Y . Then =2ω

I has P -connections for some Suslin poset P .

Proof. I will first identify the Suslin poset. Let O be a countable basis for Y
closed under finite unions and intersections. Let P be the poset consisting of
pairs p = 〈tp, ap〉 where tp ∈ O and ap ∈ I. The ordering is defined by q ≤ p if

tp ⊂ tq, ap ⊂ aq, and ap ∩ tq \ tp = 0. The poset P adds an open set Ȯgen ⊂ Y
which is the union of the first coordinates of the conditions in the generic filter.

Claim 8.1.12. P is a σ-centered Suslin poset. It forces Y \ Ȯgen ∈ I.

Proof. The centeredness is immediate as two conditions with the same first
coordinate are compatible in P . The complexity evaluation is clear as well.
Note that conditions p, q ∈ P are compatible if and only if the sets aq ∩ tp \ tq
and ap ∩ tq \ tp are both empty. This is a Borel condition as the sets ap, aq are
compact.

To see that P 
 Y \ Ȯgen ∈ I, recall that by [14, Theorem 33.3], the σ-ideal
I is in fact Gδ in K(X). Thus, I =

⋂
n Un where Un ⊂ K(X) is open. The open

sets Un can be chosen to be downward closed, and for each such a set there is a
collection On of open subsets of X such that Un = {K ∈ K(X) : ∃O ∈ On K ⊂
O}. Let p ∈ P be a condition and n ∈ ω. It will be enough to find a condition
q ≤ p and a set O ∈ On such that q 
 Ȯgen ∪ O = X. To do this, pick a set
O ∈ On such that ap ⊂ O; such a set must exist as a ∈ I. By a compactness
argument, there is a set O′ ⊂ X in On such that O′ ∪O = X and O′ ∩ ap = 0.
The condition q = 〈tp, Op ∪O′〉 ≤ p has the required properties.

Let C ⊂ Y be a countable dense set and let X = (2ω)C be the domain
of =I . Now suppose that V [H] is some generic extension of V , containing
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smaller generic extensions V [G0], V [G1] which in turn contain representatives
x0, x1 ∈ X of the same =I -class. Let a ⊂ Y be the closure of the set {c ∈ C :
x0(c) 6= x1(c)}; so a ∈ I. Let O ⊂ Y be a set P -generic over V [H] meeting
the condition 〈0, a〉. By Fact 2.3.8, the set O is P -generic over both models
V [G0], V [G1]. Let x ∈ X be defined by x(c) = x0(c) if c ∈ O and x(c) = 0
otherwise. It is clear that x belongs to both models V [G0][O] and V [G1][O],
and x =I x0. This concludes the proof.

As the last remark in this section, I will show that the notion of P -connections
is absolute throughout all forcing extensions.

Theorem 8.1.13. Suppose that there are class many Woodin cardinals. Let P
be a Suslin forcing, and let E be an analytic equivalence relation on a Polish
space X. The truth value of the statement “E has P -connections” is the same
in all forcing extensions.

Proof. To begin, recall that c.c.c. of a given Suslin forcing is absolute among all
forcing extensions by [2, Theorem 3.6.6], and therefore the poset given by the
definition of P remains Suslin in all forcing extensions. Now, let Q be a poset.
I will show that E has P -connections if and only if some condition of Q forces
E to have P -connections; this will prove the theorem.

Suppose first that E has P -connections. If G ⊂ Q is a filter generic over
V , R0, R1, R2 are posets in V [G], and H0 ⊂ R0, H1 ⊂ R1, and H2 ⊂ R2 are
filters generic over V [G] such that H0, H1 ∈ V [G][H2], and x0, x1 ∈ X are E-
related points in the respective models V [G][H0] and V [G][H1], then by the
P -connections of E, in some further generic extension of V [G][H2] there are
filters K0 ⊂ P and K1 ⊂ P which are respectively generic over V [G][H0] and
V [G][H1], and a point x ∈ V [G][H0][K0] ∩ V [G][H1][K1] which is E-related to
x0, x1. This, however, verifies the P -connections of E in the model V [G].

The converse is significantly more difficult. Suppose that some condition
q ∈ Q forces E to have P -connections. Suppose that R0, R1, R2 are posets in
V , Ḣ0, Ḣ1 are R2-names and ẋ0, ẋ1 are respective R0, R1-names for elements of
the space X such that R2 
 Ḣ0 ⊂ R0 is generic over V , Ḣ1 ⊂ Ř1 is generic over
V , ẋ0/Ḣ0 E ẋ1/Ḣ1. Let κ = |P5(R2)|. I will show that

(*) R2×Coll(ω, κ) 
 ∃K0,K1 ⊂ P respectively generic over the models V [Ḣ0]
and V [Ḣ1] and a point x ∈ V [Ḣ0][K0] ∩ V [Ḣ1][K1] such that x E ẋ0/Ḣ0.

Let δ be a Woodin cardinal larger than |Q|, |R2|. Let L be a generic filter for
the full stationary tower P<δ, containing the condition consisting of all countable
subsets of P(Q). Let j : V →M be the associated embedding into a transitive
model M in V [L]. It is known [16, Theorem 2.5.8] that j(δ) = δ and M is
closed under < δ-sequences in V [L]. I will show that (*) holds in M with all its
parameters moved by j; the elementarity of j will conclude the argument.

Let H2 ⊂ j(R2) be a filter generic over V [L], and let H0 ⊂ j(R0), H1 ⊂
j(R1) be the filters given by H0 = j(Ḣ0)/H2 and H1 = j(Ḣ1)/H2; let also
x0 = j(ẋ0)/H0 and x1 = j(Ḣ1). By the elementarity of the embedding j and
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the forcing theorem applied in the model M , H0, H1 are filters generic over M
and x0 E x1. Since M is closed under < δ-sequences in V [L], and the posets
R0, R1 have size < δ, the filters H0, H1 are generic over the model V [L].

The model M (and therefore also the model V [L]) contains a filter G ⊂ Q
generic over V : the choice of the initial condition in the nonstationary tower
forcing guarantees that j′′P(Q) is countable in M and therefore the generic filter
G can be obtained in M . Thus, by the P -connections of E in the model V [G],
in some further forcing extension V [L][H2][K] there are filters K0,K1 ⊂ P such
that

(**) K0,K1 ⊂ P are respectively generic over V [L][H0] and V [L][H1] and
there is a point x ∈ V [L][H0][K0] ∩ V [L][H1][K1] which is E-related to
both x0, x1.

LetK ′ ⊂ Coll(ω, j(κ)) be a filter generic over V [L][H2][K]. By the Mostowski
absoluteness between the models V [L][H2][K] and V [L][H2][K ′], the filtersK0,K1

satisfying (**) exist also in V [L][H2][K ′] (as P(P ) ∩ V [H2] is countable there).
Now, Vδ ∩ V [L][H2][K ′] = Vδ ∩M [H2][K ′], since the model M is closed un-
der < δ-sequences in V [L] and the poset j(R2) × Coll(ω, j(κ)) has size < δ
in the model V [L]. Thus, the filters K0,K1 satisfying (**) exist in the model
M [H2][K ′]. This confirms (*) in M and concludes the proof of the theorem.

Question 8.1.14. Does Theorem 8.1.13 hold without the large cardinal as-
sumptions?

Question 8.1.15. Let P be a Suslin forcing, and let E be an analytic equiv-
alence relation on a Polish space X. What is the complexity of the collection
I = {A ⊂ X : A is analytic and E � A has P -connections}? Is it Π1

1 on Σ1
1?

It is rather immediate that I is a σ-ideal of analytic sets.

8.2 The uniformity cardinal

In the spirit of the study of cardinal invariants of the continuum, one can con-
sider the following natural definition:

Definition 8.2.1. Let E be an analytic equivalence relation on a Polish space
X. The uniformity number non(E) is the smallest possible cardinality of a set
A ⊂ X such that there is no Borel set B ⊂ X such that A ⊂ B and E � B is
smooth. If E is smooth then let non(E) =∞.

The collection of all Borel sets B ⊂ X such that E � B is smooth is a σ-ideal
by [12, Corollary 7.3.2] at least in the case of a Borel equivalence relation E.
Thus, the invariant non(E) is nothing else but the uniformity number of this
σ-ideal as defined in [2, Definition 1.3.]. Its value may depend on the structure
of real line and statements such as Martin’s Axiom. The most important point
here is that uniformity is a Borel reducibility invariant, even though in a sense
opposite to the pinned cardinal κ(E):
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Theorem 8.2.2. Suppose that E,F are analytic equivalence rleations on re-
spective Polish spaces X,Y . If E ≤B F then non(E) ≥ non(F ).

Proof. Let h : X → Y be the Borel reduction of E to F . Suppose that A ⊂ X
is a set such that there is no Borel set B ⊂ X such that A ⊂ B and E � B
is smooth. Let A′ = h′′A ⊂ Y . Then there is no Borel set B′ ⊂ Y such that
A′ ⊂ B′ and F � B′ is smooth–if B′ ⊂ Y were such a set, then its preimage
B = h−1B′ would contradict the assumed properties of the set A ⊂ X. The
inequality claimed in the theorem immediately follows.

Thus, high values of non(E) should indicate a simple equivalence relation E.
The first observation is that in ZFC, non(E0) ≤ non(I) holds where I is either
the meager ideal or the null ideal on 2ω. This follows immediately from the well-
known fact that if a Borel set B ⊂ 2ω is non-meager or non-null, then E0 � B
is not smooth. Thus, in models where non(I) = ℵ1, the uniformity invariant
trivializes: the smooth equivalence relations have uniformity equal to ∞, while
the nonsmooth Borel equivalence relations have uniformity equal to ℵ1 by the
Glimm–Effros dichotomy. If one wants to find finer distinctions in the uniformity
invariant, it is necessary to move to other models of set theory. The following
result places EKσ among the equivalence relations with large uniformity.

Theorem 8.2.3. Assume that Martin’s Axiom for κ holds.Then non(EKσ ) > κ.

Proof. I will phrase the proof in a way that will be useful later.

Lemma 8.2.4. Suppose that Martin’s Axiom for κ holds. Let X = 2ω or
X = ωω. Let G ⊂ [X]2 be a nonempty Gδ graph invariant under E0. Suppose
that A ⊂ X is a set of size κ such that [A]2 ⊂ G. Then there is a perfect set
P ⊂ X such that [P ]2 ⊂ G and [A]E0

⊂ [P ]E0
.

Proof. For definiteness, consider the case X = ωω. Write G =
⋂
nOn for some

open sets On ⊂ [X]2. Consider the poset Q consisting of pairs q = 〈fq, gq〉 such
that for some nq ∈ ω, fq : 2nq → ω<ω is a map and gq : A → 2nq is a partial
injection, and for distinct strings t 6= u ∈ 2nq , [fq(t)]× [fq(u)] ⊂

⋂
n∈nq On. The

ordering is defined by r ≤ q if nq ≤ nr, ∀t ∈ 2nr fq(t � nq) ⊂ fr(t), dom(gq) ⊂
dom(gr), and ∀x ∈ dom(gq) gq(x) ⊂ gr(x) and fr(gr(x)) \ fq(gq(x)) ⊂ x. It is
not difficult to see that Q is indeed a partial ordering.

Claim 8.2.5. The following sets are dense in Q:

1. {q ∈ Q : nq > n} for every natural number n;

2. {q ∈ Q : x ∈ dom(gq)} for every point x ∈ A.

Proof. First argue that for every number n ∈ ω, every point x ∈ dom(G)
and every sequence s ∈ ω<ω there is an extension s ⊂ t ∈ ω<ω such that
[x � dom(t)] × [t] ⊂

⋂
m∈nOm. To see this, use the invariance of the graph

G under E0 to find a point y ∈ [s] such that {x, y} ∈ G and then let t be a
sufficiently long initial segment of y. By the same reasoning, for every n ∈ ω
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and s0, s1 ∈ ω<ω there are extensions s0 ⊂ t0 and s1 ⊂ t1 in ω<ω such that
[t0]× [t1] ⊂

⋂
m∈nOm.

To prove (1), let q ∈ Q be arbitrary. It will be enough to show that there is
r ≤ q such that nr = nq + 1 and dom(gq) = dom(gr). To find r, by a repeated
use of the preceding paragraph find a function fr : 2nr → ω<ω such that for
all t ∈ 2nq fq(t) ⊂ fr(t

a0) and fq(t) ⊂ fr(t
a1), and if x ∈ dom(gq) is such

that t = gq(x) then fr(t
a0) \ fq(t) ⊂ x, and moreover, for distinct s0, s1 ∈ 2nr ,

[s0] × [s1] ⊂
⋂
n∈nr On. Define the function gr by dom(gr) = dom(gq) and

gr(x) = gq(x)a0. Observe that the condition r = 〈fr, gr〉 is as required.
To prove (2), given condition q ∈ Q and x ∈ A, just use the preceding

paragraph to find a condition r ≤ q such that nr = nq + 1 and dom(gq) =
dom(gr). Then rng(g) 6= 2nr . If x ∈ dom(gr), the condition r ≤ q is in the
requested set. If x /∈ dom(gr), find a string t ∈ 2nr such that t /∈ rng(gr), let
gs = gr ∪ 〈x, t〉, and observe that the condition s = 〈fr, gs〉 ≤ r ≤ q is in the
requested set. This completes the proof of (2).

Claim 8.2.6. The poset Q is c.c.c.

Proof. By the usual ∆-system and counting arguments, it is enough to show the
following. Let q, r ∈ Q be conditions such that nq = nr, fq = fr and, writing
a = dom(gq)∩ dom(gr), gq � u = gr � u. Then q, r are compatible in Q. For the
simplicity of the notation, assume that a = 0.

Let ns = nq+1. Define gs to be a function with dom(gs) = dom(gq)∪dom(gr)
and ∀x ∈ dom(gq) gs(x) = gq(x)a0 and ∀x ∈ dom(gr) gs(x) = gr(x)a1. For
every x ∈ dom(gs), write x′ = x rew fq(gs(x) � nq). Note that the invariance of
the graph G under E0 changes means that [{x′ : x ∈ dom(gs)}]2 ⊂ G. Now it
is not difficult to find a function fs : 2ns → ω<ω so that for distinct sequences
t 6= u ∈ 2ns , [fs(t)]×[fs(u)] ⊂

⋂
n∈ns On and for all x ∈ dom(gs), fs(gs(x)) ⊂ x′.

It is immediate that the condition s = 〈fs, gs〉 is the desired lower bound of the
conditions q, r.

Now, use Martin’s Axiom to find a filter H ⊂ Q that meets all the open
dense subsets of Q indicated in the previous claim. Define a continuous function
f : 2ω → X by setting f(y) =

⋃
{fq(y � nq) : q ∈ H}. I claim that the set

P = rng(f) works as required. The set P is a homeomorphic copy of 2ω and
therefore perfect. [P ]2 ⊂ G follows from the definition of the poset Q. To see
that every element of the set A has an E0-equivalent in the set P , for every
x ∈ A consider the point y =

⋃
{gq(x) : q ∈ Q and x ∈ dom(gq)} ∈ 2ω and use

the definition of the poset Q to show that f(y) E0 x holds as desired.

Now, suppose that κ is a cardinal, Martin’s Axiom for κ holds, and A ⊂ ωω
is a set of size κ. I must produce a Borel set B ⊂ ωω such that A ⊂ B
and EKσ � B is smooth. Just use Lemma 8.2.4 to the complement of EKσ to
produce a perfect set P ⊂ ωω such that [A]E0

⊂ [P ]E0
such that P consists of

pairwise EKσ -unrelated elements. Let B = [P ]E0
. This is a Borel set containing

A. Moreover, E � B is smooth since the Borel map h : B → P defined by
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h(x) =the unique element of P which is E0-equivalent to x, reduces E � B to
the identity on the set P .

Other equivalence relations with high values of the uniformity invariant are
difficult to find. One tool that can reach beyond EKσ is the following theorem:

Theorem 8.2.7. Suppose that J is an analytic ideal on ω. Suppose that En
are equivalence relations for each n ∈ ω. Then non(

∏
J En) ≥ min{non(=2ω

J

), non(En) : n ∈ ω}.

Proof. Let Xn be the respective Polish domains of the equivalence relations
En. For simplicity assume that these Polish spaces are pairwise disjoint. Let
X =

∏
nXn and let E =

∏
J En. Let κ = min{non(=2ω

J ), non(En) : n ∈ ω}.
Suppose that A ⊂ X is a set of size < κ; I must produce a Borel set B ⊂ X
containing A such that E � B is smooth. Let An = {y ∈ Xn : ∃x ∈ A y =
x(n)}; thus |An| < κ for every n ∈ ω. Thus, there is a Borel set Bn ⊂ Xn

containing An such that En � Bn is smooth. The relation
⋃
nEn �

⋃
nBn is

still smooth, let h :
⋃
nBn → 2ω be its Borel reduction to the identity. For

every x ∈
∏
nBn define k(x) = 〈h(x(n)) : n ∈ ω〉 ∈ (2ω)ω = dom(=2ω

J ). Since
|k′′A| ≤ |A| < non(=2ω

J ), there is a Borel set C ⊂ (2ω)ω containing k′′A on
which =ω

J is smooth, as witnessed by a Borel reduction l : C → 2ω. It is not
difficult to verify that k−1C is a Borel set containing A on which E is smooth
as witnessed by the reduction l ◦ k.

Low values of the invariant non(E) should indicate a complicated equivalence
relation E. Indeed, it turns out that the unpinned equivalence relations have a
provably low uniformity.

Theorem 8.2.8. Suppose that E is unpinned equivalence relation on a Polish
space X. Then non(E) = ℵ1.

Proof. Theorem 8.3.10 below shows that there is a sequence 〈xα : α ∈ α1〉 of
pairwise E-unrelated points of X such that for every analytic E-invariant set
C ⊂ X, either {α ∈ ω1 : xα ∈ C} or {α ∈ ω1 : xα /∈ C} contains a club. I claim
that the set A = {xα : α ∈ ω1} witnesses the fact that non(E) = ℵ1.

Indeed, suppose for contradiction that B ⊂ X is a Borel set containing A
such that E � B is smooth, as witnessed by a Borel reduction h : B → 2ω

of E � B to id. By the countable completeness of the nonstationary ideal,
there must be a clopen set O ⊂ 2ω such that the set h−1O contains points
xα for stationary-costationary set of α. However, the analytic E-invariant set
C = {x ∈ X : ∃y ∈ B x E y and h(y) ∈ O} then contradicts the assumed
properties of the original sequence 〈xα : α ∈ α1〉.

The uniformity invariant is connected with separation cardinal invariants
that I proceed to define now.They relate in a rather obvious way to the classical
Martin–Solovay c.c.c. coding procedure [10, Theorem 16.20]. I will first recall
an easy restatement of the Martin–Solovay result.
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Lemma 8.2.9. Assume that Martin’s Axiom for κ holds. Let X be a Polish
space and A0, A1 ⊂ X be disjoint sets of size κ. Then there is a Borel set B ⊂ X
such that A0 ⊂ B and A1 ∩B = 0.

Proof. Let X ′ ⊂ P(ω) be a perfect collection of pairwise almost disjoint infinite
subsets of ω. Let h : X → X ′ be a Borel bijection, and put A′0 = h′′A,
A′1 = h′′A1. Let P be the poset of all pairs p = 〈tp, ap〉 where tp ⊂ ω is finite
and ap ⊂ A′0 is finite, ordered by q ≤ p if tp ⊂ tq, ap ⊂ aq, and (tq \ tp)∩

⋃
ap =

0. This is clearly a σ-centered partial order as conditions with the same first
coordinate are compatible. For every x ∈ A′0 let Dx ⊂ P be the open desne
subset of P of all conditions p ∈ P with x ∈ ap. For every x ∈ A′1 and every
n ∈ ω let Dx,n be the open dense subset of P consisting of all conditions p with
tp ∩ x \ n 6= 0. Use the Martin’s Axiom to find a filter G ⊂ P which meets all
the open dense sets named. It is not difficult to see that writing y =

⋃
p∈G tp,

the set y has infinite intersection with all sets x ∈ A′1, and finite intersection
with all sets x ∈ A′0. Write B′ = {x ∈ Y : x ∩ y is finite}; so B′ ⊂ Y is Borel
and A′0 ⊂ B′ and B′ ∩ A′1 = 0. The set B = h−1B′ works as desired in the
lemma.

A curious landscape appears when one attempts to generalize this result to
quotient spaces X/E for various analytic equivalence relations E. A natural
definition suggests itself:

Definition 8.2.10. Let E be an analytic equivalence relation on a Polish space
X. Let κ, λ be cardinals. Say that E has κ, λ-separation property if for every
pair A0, A1 ⊂ X of sets such that |A0| < κ, |A1| < λ and [A0]E ∩ A1 = 0 there
is an E-invariant analytic set B ⊂ X such that A0 ⊂ B and B ∩A1 = 0.

As it was the case with the pinned cardinal, the status of separation property
of a given relation depends on the specific forcing extension while the nonre-
ducibility consequences of it are absolute among all forcing extensions. The
nontrivial cases occur when ℵ1 < κ ≤ c and 1 < λ ≤ c and Martin’s Axiom or a
similar principle holds. I will first verify that the separation property is indeed
a reducibility invariant.

Theorem 8.2.11. If E,F are analytic equivalence relations on Polish spaces
X,Y and κ, λ be cardinals. If E ≤B F and F has the κ, λ-separation property,
then E has the κ, λ-separation property as well.

Proof. Let h : X → Y be a Borel reduction of E to F . Let A0, A1 ⊂ X be
sets such that |A0| < κ, |A1| < λ, and [A0]E ∩ A1 = 0. Let A′0 = h′′A0 and
A′1 = h′′A1 be subsets of Y . Since h is a reduction, [A′0]F ∩ A1 = 0. By the
κ, λ-separation property of F , there is an F -invariant analytic set B′ ⊂ Y such
that A′0 ⊂ B′ and B′ ∩ A′1 = 0. The analytic E-invariant set B = h−1B′ then
separates A0 from A1.

The main tool for securing separation properties for larger cardinals is the
Martin–Solovay coding together with forcings increasing the uniformity invari-
ant.
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Theorem 8.2.12. Suppose that κ is a cardinal and Martin’s Axiom for κ holds.
If E is an analytic equivalence relation on a Polish space X and non(E) > κ,
then E has the κ+, κ+-separation property.

Proof. Let A0, A1 ⊂ X be sets of size κ such that [A0]E ∩A1 = 0. Find a Borel
set C ⊂ X containing A0 ∪ A1 such that E � C is smooth, as witnessed by
some Borel reduction h : C → 2ω of E � C to the identity. Use Lemma 8.2.9
and the Martin’s Axiom assumption to find a Borel set D ⊂ 2ω such that
h′′A0 ⊂ D and h′′A1 ∩ D = 0. The E-invariant analytic set B ⊂ X defined
by B = {x ∈ X : ∃y ∈ C x E y ∧ h(y) ∈ D} separates the sets A0 and A1 as
desired.

The main tool for refuting separation properties is the unpinned property of
equivalence relations:

Theorem 8.2.13. If E is an analytic equivalence relation an a Polish space X
and E is unpinned, then E does not have the ℵ2,ℵ2-separation property.

Proof. Theorem 8.3.10 below yields a sequence 〈xα : α ∈ ω1〉 of pairwise E-
unrelated points such that for every analytic E-invariant set A ⊂ X, either
the set {α ∈ ω1 : xα ∈ A} or its complement contains a closed unbounded
set. Let S ⊂ ω1 be a stationary co-stationary set, and let A0 = {xα : α ∈ S}
and A1 = {xα : α ∈ ω1 \ S}. The sets A0, A1 ⊂ X witness the failure of the
ℵ2,ℵ2-separation property of E.

The results in this section leave many questions open.

Question 8.2.14. Let J be the eventual density zero ideal on ω. Evaluate
non(=J) and the separation properties of =J in the context of Martin’s Axiom.

Question 8.2.15. Under Martin’s Axiom and c > ℵ1, are the following equiv-
alent for every analytic equivalence relation E?

1. E is pinned;

2. non(E) = c (or non(E) =∞ to cover the case of smooth E);

3. E has the c, c-separation property.

8.3 Ideal sequences

The failure of the separation properties is often exemplified in a particularly
spectacular fashion captured in the following definition:

Definition 8.3.1. Let κ be a cardinal and I an ideal on κ. Let E be an
analytic equivalence relation on a Polish space X. An I-sequence for E is a
sequence 〈xα : α ∈ κ〉 of pairwise E-unrelated elements of the space X such
that for every E-invariant analytic set A ⊂ X, either {α ∈ κ : xα ∈ A} ∈ I or
{α ∈ κ : xα /∈ A} ∈ I.
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The interesting cases include the nonstationary ideal on κ as well as its
restrictions to various stationary sets. The existence of ideal sequences is inti-
mately tied with the pinned property, as Theorem 8.3.10 below shows. Once
again, the nonexistence of I-sequences is a Borel reducibility invariant:

Theorem 8.3.2. If E,F are analytic equivalence relations on Polish spaces
X,Y , E ≤B F , I is an ideal on a cardinal κ, and F has no I-sequence, then E
has no I-sequence either.

Proof. If h : X → Y is a Borel reduction of E to F and 〈xα : α ∈ κ〉 is a
I-sequence for E, then 〈h(xα) : α ∈ κ〉 is a I-sequence for F .

I will start this section with showing that a number of equivalence relations
does not have interesting ideal sequences.

Theorem 8.3.3. Let κ be a cardinal and I be a nonprincipal σ-ideal on κ. Let
E be an analytic equivalence relation on a Polish space X such that non(E) > κ.
Then E does not have an I-sequence.

Proof. Let 〈xα : α ∈ κ〉 be a sequence of pairwise E-unrelated elements of the
space X. Let B ⊂ X be a Borel set containing all points xα for α ∈ κ such
that E � B is smooth as witnessed by a Borel reduction h : B → 2ω of E � B
to the identity. Use the σ-additivity of the ideal I to find a clopen set O ⊂ 2ω

such that neither the set {α ∈ κ : h(xα) ∈ O} nor its complement are in I. Let
A = {x ∈ X : ∃y ∈ B x E y and h(y) ∈ O}. The analytic E-invariant set A
shows that 〈xα : α ∈ κ〉 is not a I-sequence.

Together with Theorem 8.2.3, I get the first conclusion about nonexistence of
ideal sequences:

Corollary 8.3.4. Suppose that κ is a cardinal and Martin’s Axiom for κ holds.
If I is a nonprincipal σ-complete ideal on κ then EKσ has no I-sequence.

Theorem 8.3.5. Suppose that κ is a cardinal and Martin’s Axiom for κ holds.
If I is a nonprincipal σ-complete normal ideal on κ and J an analytic P-ideal
on ω, then =J does not have a I-sequence.

Proof. Use a theorem of Solecki [23] to find a lower semicontinuous submeasure
φ on ω such that J = {a ⊂ ω : limn φ(a \ n) = 0}. For points x, y ∈ 2ω define
d(x, y) = lim supn φ({m > n : x(m) 6= y(m)}). This is a quasimetric on 2ω and
x =J y if and only if d(x, y) = 0.

Suppose that 〈xα : α ∈ κ〉 is a sequence of pairwise =J -inequivalent elements
of 2ω. I must find an analytic =J -invariant set A ⊂ 2ω such that neither the set
{α ∈ κ : xα ∈ A} nor its complement belong to I. The treatment divides into
two cases.
Case 1. There is y ∈ 2ω and a real ε > 0 such that neither the set {α ∈ κ :
d(y, xα) < ε} nor its complement belong to I. In this case, just let A = {x ∈
2ω : d(x, y) < ε} and observe that this is an analytic =J -invariant set with the
requested properties.
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Case 2. If Case 1 fails, I will first find a set C ⊂ κ whose complement belongs
to I and a real number ε > 0 such that the points xα for α ∈ C have pairwise
d-distance > ε. Towards its construction, observe the following.

Claim 8.3.6. There is a rational number ε > 0 such that for every y ∈ 2ω, the
set Dy,ε = {α ∈ κ : d(y, xα) ≤ ε} belongs to I.

Proof. If this failed for every ε > 0 as witnessed by yε ∈ 2ω, then by the failure
of Case 1 the complements of the sets Dyε,ε would belong to I, and by the
σ-completeness of I this would be also the case for their intersection D. Let
α 6= β be two distinct ordinals in D, and let ε > 0 be a rational such that
2ε < d(xα, xβ). Then d(yε, xα), d(yε, xβ) ≤ ε by the definition of the set Dyε,ε

while 2ε < d(xα, xβ), contradicting the triangle inequality for the quasimetric
d.

Fix the rational ε > 0 that works as in the claim. Use the normality of the ideal
I to conclude that the diagonal union D of sets Dxα,ε is in I. Let C = κ \ D
and observe that for distinct ordinals α 6= β ∈ C, d(xα, xβ) > ε as desired.

Now, consider the Gδ graph G ⊂ [2ω]2 connecting x, y if d(x, y) > ε. Use
Lemma 8.2.4 and Martin’s Axiom to find a perfect set P ⊂ 2ω such that [P ]2 ⊂
G and for every ordinal α ∈ C, P contains some E0-equivalent of xα. By the
σ-additivity of the ideal I, there must be a relatively open set O ⊂ P such that
neither the set {α ∈ κ : [xα]E0

∩ O} nor its complement belong to the ideal I.
Let A = {x ∈ 2ω : ∃y ∈ O x =J y}. This is an analytic =J -invariant set, and it
confirms that 〈xα : α ∈ κ〉 is not a I-sequence.

For the following theorem, recall the definition of trace and the ideals con-
nected with the Cantor–Bendixson ranks of countable sets of Theorem 6.6.18.
If a ⊂ 2<ω is a set then write tr(a) = {x ∈ 2ω : ∀n ∃t ∈ a x � n ⊂ t}.

Theorem 8.3.7. Suppose that κ is a cardinal and Martin’s Axiom for κ holds.
Suppose that I is a nonprincipal normal σ-complete normal ideal on κ. Let J
be the ideal of sets a ⊂ 2<ω such that tr(a) is a closed set of Cantor-Bendixson
rank 1. Then the equivalence relation =J has no I-sequence.

Proof. Let 〈xα : α ∈ κ〉 be a sequence of pairwise =J -unrelated points of X =

22
<ω

. I must find an analytic =J -invariant set A ⊂ X such that neither the set
{α ∈ κ : xα ∈ A} nor its complement are in I. The treatment divides into two
cases.
Case 1. There is a binary string t ∈ 2<ω and a function y ∈ 2[t] such that
neither the set {α ∈ κ : xα � [t] =J y} nor its complement belong to the ideal I.
In this case, fix such t, y and let A = {x ∈ 2ω : x � [t] =J y}; this is an analytic
=J -invariant set that shows that the sequence 〈xα : α ∈ κ〉 is not an I-sequence.
Case 2. If Case 1 fails, consider the set T = {t ∈ 2ω : ∀y ∈ 2[t] {α ∈ κ : xα �
t =J y} ∈ I}. It is immediate from the definition of J that this is a downward
closed set of binary strings without endpoints. The treatment splits into two
subcases.
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Case 2a. The tree T has only finitely many branches. In this case, for the
simplicity of notation assume that T has only one branch and this branch has
zero entries only. For every n ∈ ω write tn for the unique binary string consisting
of first n many zero and then a single 1. Let yn ∈ 2[tn] be a sequence such that
Dn = {α ∈ κ : xα � [tn] = yn} /∈ I. By the failure of Case 1, the complement of
the set Dn is in I and by the σ-completeness of the ideal I the same is true of
the set D =

⋂
nDn.

Consider the space Z =
∏
n 2[tn] and the equivalence relation F on Y which

is the modulo finite product of E0 equivalence relations on the coordinates of the
space Z. Consider the function h : X → Z defined by h(x) = 〈x � [tn] : n ∈ ω〉.
It is not difficult to see that g is a continuous homomorphism of =J to F . I will
first show that the points h(xα) are pairwise F -unrelated for α ∈ D. Indeed,
if h(xα) F h(xβ) was true for some α 6= β, then it would be the case that for
all n ∈ ω xα � [tn] =J xβ � [tn] (since α, β ∈ D) and for all but finitely many
n ∈ ω, xα � [tn] E0 xβ � [tn] (since h(xα) F h(xβ)). This together implies that
xα =J xβ , which contradicts the assumptions on the sequence 〈xα : α ∈ κ〉.

Now, the equivalence relation F does not have I-sequences by the conjunc-
tion of Theorems 8.3.3 and 8.2.7. Thus, there is a =J -invariant analytic set
B ⊂ Z such that neither the set {α ∈ D : h(xα) ∈ B} nor its complement
belong to the ideal I. Let A = {x ∈ X : h(x) ∈ B} and observe that the set A
has the requested properties.
Case 2b. The tree T has infinitely many branches. In this case, for every
α ∈ D consider the set Dα = {β ∈ κ : ∃t ∈ T xα � [t] =J xβ � [t]} ⊂ κ. By the
definition of the tree T and the σ-completeness assumption on the ideal I, the
set Dα belongs to I. Use the normality of the ideal I to find a set C ⊂ κ such
that for every α ∈ β ∈ C, β /∈ Dα and κ\C ∈ I. Now, consider the Gδ graph G
on X defined by x G y if for every t ∈ T the set {s ⊃ t : x(s) 6= y(s)} is infinite.
The graph G is disjoint from the equivalence relation =J , since whenever x G y
are two G-connected points in X, the set tr({s ∈ 2<ω : x(s) 6= y(s)}) contains all
branches of T , and the case assumption then implies x 6=J y. The construction
of the set C implies that if α 6= β ∈ C are distinct elements, then xα G xβ .
Lemma 8.2.4 now shows that there is a perfect set P ⊂ X consisting of pairwise
G-unrelated points such that {xα : α ∈ C}E0 ⊂ [P ]E0 . Use the σ-completeness
of the ideal I to find a relative basic open set O ⊂ P such that neither the set
{α ∈ C : the unique E0-equivalent of xα in C belongs to O} nor its complement
belong to the ideal I. Let A = [O]=J and observe that the analytic =J -invariant
set A ⊂ X has the requested properties.

Theorem 8.3.8. Suppose that κ is a cardinal and Martin’s Axiom for κ holds.
If I is a nonprincipal σ-complete normal ideal on κ and K is an analytic σ-
ideal of closed sets on a Polish space X, then the equivalence relation =K has
no I-sequence.

Proof. Let B ⊂ X be a countable dense set and let =K be realized as the
equivalence relation on 2B by setting x =K y if the closure of the set {b ∈ B :
x(b) 6= y(b)} is in the ideal K. Let 〈xα : α ∈ κ〉 be a sequence of pairwise
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=K-unrelated points in the set 2ω. I must find an analytic =J -invariant set
A ⊂ 2D such that neither the set {α ∈ κ : xα ∈ A} nor its complement belong
to I.

Let O be a countable basis of the space X. For every set O ∈ O and every
point z ∈ 2B∩O, let DO,z = {α ∈ κ : xα � O =K z}. The treatment separates
into two cases.
Case 1. There is a set O ∈ O and a point z ∈ 2D∩O such that neither the set
DO,z ⊂ κ nor its complement belongs to I. In this case, let A = {x ∈ 2B : x �
O =K z} and note that A ⊂ 2B is a =K-invariant analytic set that works as
required.
Case 2. If Case 1 fails, I will first produce a set C ⊂ κ whose complement
belongs to I and a set U ⊂ O such that X \

⋃
U /∈ K and ∀α 6= β ∈ C ∀O /∈

U xα � O 6=K xβ � O . Let U = {O ∈ O : ∃z ∈ 2B∩O : the complement of the
set DO,z belongs to I}.

Claim 8.3.9. The set X \
⋃
U is not in the ideal K.

Proof. Suppose for contradiction that this fails. Enumerate U = {On : n ∈ ω}
and for every O ∈ U pick a function zn ∈ 2D\On such that the complement
of the set DOn,zn belongs to I. Let y ∈ 2D be any point such that for every
n ∈ ω, y agrees with zn on the set On \

⋃
m<nOm. The complement of the set

D =
⋂
nDOn,zn belongs to I by the σ-additivity of the ideal I. I will show that

for every α ∈ D, xα =K y holds. As the ideal I is nonprincipal, the set D must
contain more than one point, and so this contradicts the assumption that the
points xα for α ∈ κ are pairwise =K-unrelated.

Thus, let α ∈ D and consider the set A = {b ∈ B : y(b) 6= xα(b)}, and the
sets An = {b ∈ B∩On : y(b) 6= zn(b)}. Note that for every n ∈ ω, the closure Ān
belongs to K as α ∈ D. It will be enough to show that Ā ⊂ (X \

⋃
U) ∪

⋃
Ān,

since the sets on the right hand side are all in K and K is a σ-ideal of closed
sets. To confirm the inclusion, suppose that v ∈ Ā is a point which belongs to⋃
U . Then there is n ∈ ω such that v ∈ On, and so v must be in the closure of

the set
⋃
m≤nAm and so Ām for some m ≤ n. This completes the proof.

For every α ∈ κ, let Dα =
⋃
O/∈U DO,xα . By the failure of Case 1 and

the definition of the set U , the sets entering this union belong to I. By the
σ-additivity of the ideal I, even the union Dα belongs to I. By the normality
of the ideal I, the diagonal union D of Dα for α ∈ κ belongs to I as well. Let
C = κ \D. This set has the required properties.

Now, consider the Gδ graph G ⊂ [2D]2 connecting points x, y if for every
open set O ∈ O \ U , the set {d ∈ B ∩ O : x(d) 6= y(d)} is infinite. By
Claim 8.3.9, the graph G is disjoint from =K : if x G y then the closure of
the set {b ∈ B : x(b) 6= y(b)} must contain the set X \

⋃
U and therefore cannot

be in the ideal K. By Lemma 8.2.4, there is a perfect set P ⊂ 2B such that
[P ]2 ⊂ G and for every ordinal α ∈ C, the set P contains some E0-equivalent
of the point xα.

As the final step, by the σ-additivity of the ideal I, there must be a relatively
open set O ⊂ P such that neither the set {α ∈ κ : [xα]E0

∩O} nor its complement
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belong to the ideal I. Let A = {x ∈ 2B : ∃y ∈ O x =J y}. This is an analytic
=J -invariant set, and it confirms that 〈xα : α ∈ κ〉 is not a I-sequence.

The most natural case of I-sequences comes with I equal to the nonstation-
ary ideal on ω1, where it is intimately connected with the pinned property of
the equivalence relation in question, as showed by the following theorem.

Theorem 8.3.10. Let E be an analytic equivalence relation on a Polish space
X and let I be the nonstationary ideal on ω1. If E is not pinned, then E has a
I-sequence.

Proof. Suppose that E is not pinned. Then, by Theorem 3.3.2(1), there is a
poset P of size ℵ1 and a nontrivial E-pinned P -name τ . Let 〈Mα : α ∈ ω1〉
be a continuous ∈-tower of countable elementary submodels of a large enough
structure containing E,X,P, τ . For every α ∈ ω1 find a filter gα ⊂ P in the
model Mα+1 which is generic over Mα, and let xα = τ/gα. It will be enough to
show that 〈xα : α ∈ ω1〉 is a I-sequence for E.

First of all, the points xα for α ∈ ω1 are pairwise E-unrelated. This follows
from the fact that τ is a nontrivial P -name. Thus, for countable ordinals β ∈ α
the forcing theorem applied in Mα to the poset P implies that Mα[gα] |= ¬xα E
xβ , and the Mostowski absoluteness for the model Mα[gα] implies that xα E xβ
indeed fails in V .

Now, suppose that B is an analytic E-invariant set. It certainly remains
E-invariant in the P -extension by the Shoenfield absoluteness. As τ is a pinned
name, it must be the case that the largest condition in P decides the statement
τ ∈ Ḃ. I will show that if P 
 τ ∈ Ḃ, then the set {α ∈ ω1 : xα ∈ B} contains
a closed unbounded set. The case when P 
 τ /∈ Ḃ is symmetrical.

Let N be a countable elementary submodel of a large enough structure
containing all the objects mentioned above, in particular the ∈-tower of models,
and write α = N ∩ ω1. It will be enough to show that xα ∈ B. Note that
P ∩ N = P ∩Mα by the continuity of the ∈-tower. Indeed, let h ⊂ P ∩ N
be a filter generic over both the countable models N and Mα[gα]. Then, by
the forcing theorem applied in the model N to P , N [h] |= τ/h ∈ Ḃ/h, and
by the Mostowski absoluteness for N [h], τ/g ∈ B holds in V . By the product
forcing theorem applied in the model Mα to the poset P ×P , the filter gα×h is
P × P -generic over Mα; by the forcing theorem Mα[gα, h] |= xα = τ/gα E τ/h,
and by the Mostowski absoluteness for this model, xα E τ/g holds even in V .
As the set B is E-invariant, it follows that xα ∈ B.

A natural question appears about the equivalence of ideal sequences and the
pinned property:

Question 8.3.11. Assume that Martin’s Axiom for ℵ1 holds. Are the following
equivalent for every analytic equivalence relation E?

1. E is pinned;

2. E has no I-sequence, where I is the nonstationary ideal on ω1.
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I can only resolve this question in the fairly restrictive case of equivalence rela-
tions Borel reducible to F2.

Theorem 8.3.12. Suppose that Martin’s Axiom for ℵ1 holds, let I be the non-
stationary ideal on ω1 and let E be an analytic equivalence relation on a Polish
space X such that E ≤wB F2. E is not pinned if and only if E has a I-sequence.

Proof. By virtue of Theorem 8.3.10, I need to prove only the right-to-left impli-
cation. Let B0 ⊂ X be a set consisting of countably many equivalence classes
and h : X → (2ω)ω be a Borel function which is a reduction of E to F2 on the
set X \ B0. Suppose that E is pinned, and 〈xα : α ∈ ω1〉 is a sequence of pair-
wise E-unrelated elements of x. I must find an analytic E-invariant set B ⊂ ω1

such that the set {α ∈ ω1 : xα ∈ B} is stationary and costationary. Removing
countably many points from the sequence if necessary, I may assume that none
of the points on the sequence belongs to B0. Write yα = rng(h(xα)) ⊂ 2ω. I
proceed in several cases.

Case 1. There is a stationary set S ⊂ ω1 such that for every α ∈ S, yα ⊂⋃
β∈α yβ .

Case 1a. There is a point z ∈ 2ω such that the set Sz = {α ∈ ω1 : z ∈ yα}
is stationary costationary. Then, let A = {w ∈ (2ω)ω : z ∈ rng(w)}. This is a
Borel F2-invariant set, and so B = B0 ∪ h−1A ⊂ X is an E-invariant analytic
set. The set B ⊂ X works as desired by the case assumption.

Case 1b. Assume now that Case 1a fails and the set y = {z ∈ 2ω : Sz contains
a club} is countable. In this case, let M be a countable elementary model of a
large structure such that α = M ∩ω1 ∈ S and argue that yα = y. Indeed, since
α ∈ S, it follows by the Case 1 assumption that yα ⊂ M , and then yα = y by
the definition of the set y and the elementarity of M . Now, if M0 and M1 are
two such countable submodels with α0 = M0∩ω1 ∈ S and α1 = M1∩ω1 ∈ S, it
follows that yα0

= yα1
= y and therefore xα0

E xα1
. This contradicts the initial

assumptions on the sequence 〈xα : α ∈ ω1〉, and so this case is impossible.

Case 1c. If both Cases 1a and 1b fail, consider the poset P of all stationary
subsets of S ordered by inclusion. In the P -extension, form the usual generic
ultrapower j : V → N into a model N . While the model N may not be
wellfounded, by the normality of the nonstationary ideal its ordinals contain an
initial segment isomorphic to ωV1 + 1. Write α = ωV1 . By elementarity of the
embedding j, α ∈ j(S) and so yα ⊂

⋃
β∈α yβ ⊂ V . By the case assumption,

y = yα. Let ẋ be a P -name for some element of X such that N |= rng(h(ẋ)) = y̌.
Since h remains a reduction in the P -extension by the Shoenfield absoluteness, N
is correct about h by the Borel absoluteness between N and the P -extension, ẋ is
an E-pinned P -name. By the Case 1c assumption, the set y ⊂ 2ω is uncountable
in V , and therefore ẋ is a nontrivial E-pinned name. This contradicts the
assumption that E is pinned, and therefore this case is again impossible.

Case 2. If Case 1 fails, then for all but nonstationarily many α ∈ ω1 there is
a point zα ∈ 2ω such that zα ∈ yα \

⋃
β∈α yβ . To simplify the notation, assume

that the nonstationary set of exceptions is actually empty.
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Case 2a. There is α ∈ ω1 such that the set Sα = {γ ∈ ω1 : zα ∈ yγ} is
stationary costationary. Then let A = {w ∈ (2ω)ω : zα ∈ rng(w)}. This is a
Borel F2-invariant set, and so B = B0 ∪ h−1A is an analytic E-invariant set.
The set B works as required by the case assumption.
Case 2b. Suppose that Case 2a fails and the set T = {α : Sα is nonstationary}
is stationary. Let T̄ = {α ∈ ω1 : α ∈ T and for all β ∈ α such that β ∈ T ,
α /∈ Sβ}; thus, T̄ ⊂ ω1 is again stationary. Note that for every α ∈ T̄ , α is the
unique ordinal γ ∈ T̄ such that zα ∈ yα. Let T = T0 ∪ T1 be a partition into
disjoint stationary subsets. A standard application of Solovay coding yields a
Borel set C ⊂ 2ω such that C ∩

⋃
α∈ω1

yα = {zα : α ∈ T0}. Let A = {w ∈
(2ω)ω : C ∩ rng(w) 6= 0}. This is clearly an analytic F2-invariant set. The set
B = B0 ∪ h−1A ⊂ X is analytic and E-invariant. The definitions show that
{α ∈ ω1 : xα ∈ B} ⊃ T0 and {α ∈ ω1 : xα /∈ B} ⊃ T1 and so the set B works as
required.
Case 2c. Suppose that the set T = {α : Sα contains a closed unbounded set}
is stationary. Let T̄ = {α ∈ ω1 : α ∈ T and for all β ∈ α such that β ∈ T ,
α ∈ Sβ}; thus, T̄ ⊂ ω1 is again stationary. For every ordinal α ∈ T̄ write α+

for the smallest ordinal in T̄ greater than α. Observe that for every α ∈ T̄ , α is
the only ordinal γ ∈ T̄ such that zα ∈ yα and zα+ /∈ yα.

Let T̄ = T0 ∪ T1 be a partition into disjoint stationary subsets, and consider
the set f = {〈zα, zα+〉 : α ∈ T̄}. A routine application of Solovay almost disjoint
c.c.c. coding 8.2.9 yields a Borel function g : 2ω → 2ω such that f ⊂ g and a
Borel set C ⊂ 2ω such that C∩

⋃
α∈ω1

yα = {zα : α ∈ T0}. Let A = {w ∈ (2ω)ω :
∃z ∈ C z ∈ rng(w) ∧ g(z) /∈ rng(w)}. This is clearly an analytic F2-invariant
set. The set B = B0 ∪ h−1A ⊂ X is analytic and E-invariant. The definitions
show that {α ∈ ω1 : xα ∈ B} ⊃ T0 and {α ∈ ω1 : xα /∈ B} ⊃ T1 and so the set
B works as required.

The reader may wonder whether I-sequences can appear in other ideals
besides the nonstationary ideal on ω1. This may occur if perhaps less frequently.
I conclude this section with two theorems addressing this situation.

Theorem 8.3.13. Suppose that κ is a cardinal and Martin’s Axiom for κ holds.
If I is a normal < ℵ2-complete ideal on κ and E is an equivalence relation
classifiable by countable structures, then E has no I-sequence.

Proof. I will first show that it is enough to consider the case of Borel equivalence
relations classifiable by countable structures. Let X be the space of all graphs
on ω and E the relation of isomorphism on X; thus E is universal among all
equivalence relations classifiable by countable structures. Let 〈xα : α ∈ κ〉 be
a sequence of pairwise E-unrelated elements of the space X. By ??? there are
Borel E-invariant sets Bδ ⊂ X for δ ∈ ω1 such that E � Bδ is Borel, and the
sets Bδ form an increasing sequence exhausting the whole space X. For every
δ ∈ ω1, let Dδ = {α ∈ C : xα ∈ Bδ}. If for some ordinal δ neither the set Dδ nor
its complement beongs to I, then the sequence 〈xα : α ∈ C〉 is not a I-sequence.
Otherwise, since the sets Dδ form an increasing union which exhausts all of κ,
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the < ℵ2-completeness of the ideal I shows that the complement of one of them
must belong to I. On that set Dδ, the equivalence relation E is Borel. Thus, it
is enough to consider only the case of Borel equivalence relations classifiable by
countable structures.

Every Borel equivalence relation classifiable by countable structures is Borel
reducible to equality of transitive countable sets of some fixed rank. Let δ ∈ ω1

be any ordinal, let B be the Borel set of extensional relations on ω that are
well-founded of rank ≤ β, and let E be the equivalence relation of isomorphism
on B. Let 〈xα : α ∈ κ〉 be a sequence of pairwise E-unrelated elements of the
set B; I must find an analytic E-invariant set A ⊂ B such that neither the set
{α ∈ κ : xα ∈ A} nor its complement belongs to I.

For every α ∈ κ write x̄α for the transitive isomorph of xα. For every
hereditarily countable set y, let Dy = {α ∈ κ : y ∈ x̄α}. The treatment divides
into two cases:
Case 1. There is a set y such that neither the set Dy ⊂ κ nor its complement
belongs to I. In such a case, the Borel set A = {x ∈ B : the transitive isomorph
of x contains y} is analytic and E-invariant and works as required.
Case 2. If Case 1 fails, consider the set u = {y: the complement of Dy belongs
to I}. It follows directly from the definitions that the set u is transitive.

Claim 8.3.14. The set u is countable.

Proof. Suppose for contradiction that the set u is uncountable, containing dis-
tinct elements yδ for δ ∈ ω1. Let α ∈ κ be an ordinal in the intersection of all
the sets Dyδ for δ ∈ ω1. Such an ordinal exists by the < ℵ2-completeness of I.
Then, for every δ ∈ ω1, it has to be the case that yδ ∈ x̄α, contradicting the
fact that the set x̄α is countable.

Let D =
⋂
y∈uDy; thus κ \ D ∈ I. For every α ∈ D with perhaps one

exception, the set x̄α is not equal to u, and so it contains some extra subsets of
u. For every α ∈ D, let Cα =

⋃
{Dz : z ⊂ u, z ∈ x̄α \ u}. The sets forming the

union are in I by the definition of u and failure of Case 1, and the union is in I
as well by the completeness of I. By the normality of I, the diagonal union C
of Cα for α ∈ D is in I as well. For distinct elements α 6= β ∈ D \ C, the sets
(x̄α \ u) ∩ P(u) and (x̄β \ u) ∩ P(u) are nonempty and pairwise disjoint.

Use the σ-completeness of I to find a set S ⊂ D \ C such that neither it
nor its complement are in I. By the Martin–Solovay coding theorem 8.2.9 and
Martin’s Axiom, there is a Borel set B ⊂ P(u) such that for every α ∈ S
and every v ∈ x̄α ∩ P(u), v ∈ B, while for every α ∈ D \ (C ∪ S), for every
v ∈ x̄α ∩P(u), v /∈ B. Consider the set A = {x ∈ X: for some v ∈ B, v belongs
to the transitive isomorph of x}. The set A is Borel, E-invariant, and neither
the set {α ∈ C : xα ∈ A} nor its complement are in I.

Theorem 8.3.15. Suppose that κ is a regular uncountable cardinal and Martin’s
Axiom for κ holds. Let I be the nonstationary ideal on the set of ordinals
in κ of countable cofinality. There is a I-sequence for the mutual domination
equivalence.
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Proof. Let C ⊂ ω denote the set of all ordinals of countable cofinality in κ. Write
E for the mutual domination equivalence relation on the space X = (ωω)ω. Use
Martin’s Axiom to find a modulo finite increasing sequence 〈yγ : γ ∈ κ〉 of
elements of ωω. For every ordinal α ∈ C choose a point xα ∈ X so that if α is a
limit of some countable set Cα ⊂ κ then xα enumerates the set {yγ : γ ∈ Cα}.
I claim that 〈xα : α ∈ C〉 is a I-sequence for E.

To verify this, first note that if α 6= β ∈ C are distinct limit points of the set
C then xα E xβ fails since the sequence 〈yγ : γ ∈ ω2〉 is modulo finite increasing.
Now, suppose that A ⊂ X is an analytic E-invariant set; I must show that the
set D = {α ∈ C : xα ∈ A} or its complement contains a relative club in C.
Let P be any poset forcing cof(ωV2 ) = ω, let 〈γ̇n : n ∈ ω〉 be a P -name for
a sequence of ordinals cofinal in ωV2 . Let ẋ be a P -name for an element of X
given by ẋ(n) = yγn for every n ∈ ω. Let p ∈ P be a condition deciding the

statement ẋ ∈ Ȧ. (In fact, p can be taken to be the largest condition in P .) I
will show that if the decision is affirmative then the set D contains a relative
club in C, and if the decision is negative then the complement of the set D
contains a relative club in C. This will complete the proof of (1).

Suppose for definiteness that p 
 ẋ /∈ Ȧ. Let M be any elementary submodel
of a large enough structure containing the condition p as well as the sequence
〈yγ : γ ∈ κ〉, such that M ∩ κ ∈ C. It will be enough to show that xα /∈ A.
For this, move to a generic extension V [G] in which there is a filter H ⊂ P ∩
M which is generic over the model M and contains the condition p. Note
that ẋ/H E xα as the sequence 〈yγ : γ ∈ M ∩ κ〉 is modulo finite increasing.
Now, M [H] |= ẋ/H /∈ A by the forcing theorem. V [G] |= ẋ/H /∈ A holds by
the Mostowski absoluteness between the wellfounded models M [H] and V [G].
V [G] |= xα /∈ A holds as the set A is E-invariant in the model V [G] by the
Shoenfield absoluteness between the models V and V [G]. Finally, V |= xα /∈ A
by the Mostowski absoluteness between the wellfounded models V and V [G].
This completes the proof.

Question 8.3.16. Let κ be a regular cardinal > ω1, and let I be the nonsta-
tionary ideal on the set of ordinals in κ of cofinality ω1. Is there a I-sequence
for the mutual domination equivalence?

Question 8.3.17. In the theorems of this section, can the assumption of Mar-
tin’s Axiom for κ be replaced by κ < c?

8.4 Linear orderability

Consider the following definition in the context of choiceless set theory.

Definition 8.4.1. An analytic equivalence relation E on a Polish space X is
linearly orderable if there is a linear ordering on the set of all E-equivalence
classes.

Clearly, the axiom of choice implies that every set can be linearly ordered and so
every analytic equivalence relation is linearly orderable. I will study the linear
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orderability in models where the axiom of choice fails. It turns out that this
study boils down to observations about names for elements of the underlying
Polish spaces close to the considerations of Chapter 6.

The main motivation resides in the following easy observation:

Theorem 8.4.2. (ZF) If E ≤wB F are analytic equivalence relations and F is
linearly orderable, then so is E.

Proof. Let X = dom(E) and Y = dom(F ) and let h : X → Y be a Borel
function which is a reduction of E to F except on a countable set a of E-
equivalence classes. Fix an enumeration a = {bn : n ∈ ω}. Let ≤F be a linear
ordering of the quotient space Y/F . Define a relation ≤E on the quotient space
X/E by setting [x0]E ≤E [x1]E if [h(x0)]F ≤F [h(x1)]F if x0, x1 /∈

⋃
a. Since h

is a reduction of E to F outside of the set
⋃
a, the relation ≤E is well defined and

it is a linear ordering on the set X/E \a. Extend ≤E to a linear ordering of the
whole quotient space X/E by appending the classes of a to the end of it, ordered
by the chosen enumeration. This completes the proof of the theorem.

Thus, one may attempt to detect nonreducibility between equivalence relations
by checking which of them are linearly orderable in which models of ZF+DC
set theory. In this section, I will consider two such models. Let κ be an inacces-
sible cardinal and G ⊂ Coll(ω,< κ) be a generic filter over V ; the first model
considered is V (R) = V (R ∩ V [G]). This is the usual choiceless Solovay model.
The second model differs from the Solovay model by containing a nonprincipal
ultrafilter on ω. The ultrafilter will be of the following common special kind:

Definition 8.4.3. A nonprincipal ultrafilter U on ω is Ramsey if for every
partition π : [ω]2 → 2 there is a homogeneous set a ∈ U , i.e. a set such that
π � [a]2 is constant.

Suppose that U ⊂ P(ω) modulo finite is a filter generic over V [G]. In
the model V [G][U ], U is a Ramsey ultrafilter on ω. The second model is the
model V (R)[U ]–the choiceless Solovay model with Ramsey ultrafilter adjoined.
In fact, it is not particularly relevant which forcing is used to adjoin the Ramsey
ultrafilter over the choiceless Solovay model as all the resulting models have the
same theory. The model V (R)[U ] satisfies the axiom of dependent choices as it
is closed under ω-sequences in the AC model V [G][U ].

Which nonreducibilities are detected by linear orderability in these two mod-
els? In the case of the choiceless Solovay model, the answer is quite simple and
known for some time:

Fact 8.4.4. [11] In the choiceless Solovay model V (R), the following are equiv-
alent for any analytic equivalence relation E:

1. E is linearly orderable;

2. E0 ≤B E fails.

In the model V (R)[U ], the answer is considerably more complicated. The
ultrafilter can be used to linearly order a good number of equivalence relations.
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Theorem 8.4.5. (ZF+DC) The class of linearly orderable equivalence relations
is closed under the following operations:

1. countable product;

2. if there is a nonprincipal ultrafilter on natural numbers, then also the
modulo finite product.

Proof. Let {Fn : n ∈ ω} be analytic equivalence relations on respective spaces
Xn. Let ≤n be linear orderings of the respective quotient spaces Xn/Fn for
every n ∈ ω. Let X =

∏
nXn, and write E =

∏
n Fn and F =

∏
n Fn modulo

finite.
To prove (1), just let ≤ be the relation on X defined by x ≤ y if for the least

number n ∈ ω such that [x(n)]Fn 6= [y(n)]Fn , it is the case that [x(n)]Fn ≤n
[y(n)]Fn . It is not difficult to see that the relation ≤ respects the E-equivalence
classes and it induces a linear ordering on X/E. To prove (2), fix a nonprincipal
ultrafilter U on ω and let ≤ be the relation on X defined by x ≤ y if the set
ax,y ⊂ ω is in U , where m ∈ ax,y if for the least number n > m such that
[x(n)]Fn 6= [y(n)]Fn , it is the case that [x(n)]Fn ≤n [y(n)]Fn . It is not difficult
to see that ≤ respects the F -classes and it induces a linear ordering on the
quotient space X/F .

Corollary 8.4.6. In the model V (R)[U ], the equivalence relations E0, E1, E3

are linearly orderable.

Proof. These equivalence relations are obtained from the linearly orderable id by
the operations of modulo finite product, infinite product, and reducibility.

Proving that an equivalence relation is not linearly orderable in V (R)[U ] is
quite challenging. One way of doing it is again considering forcing names for
elements of the underlying Polish space, as in the following definition.

Definition 8.4.7. Let E be an analytic equivalence relations on a Polish space
X. Let P be a poset and τ, σ be P -names for elements of X. Call the names
σ, τ E-interchangeable if for every condition p ∈ P , in some generic extensions
there are filters G0, G1 ⊂ P separately generic over the ground model, both
containing p, such that τ/G0 E σ/G1 and σ/G0 E τ/G1. The pair σ, τ is
nontrivial if P 
 ¬σ E τ .

Thus, every name is interchangeable with itself and all names that are forced
to be E-related to it. Of course, the nontrivial case is where all the interest
lies. Interchangeability is clearly symmetric, but it does not appear to be an
equivalence relation. A similar definition will be useful also for names for E-
pinned names:

Definition 8.4.8. Let E be an analytic equivalence relations on a Polish space
X. Let P be a poset and τ, σ be P -names for E-pinned names of elements of
X on some posets. Call the names σ, τ Ē-interchangeable if for every condition
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p ∈ P , in some generic extensions there are filters G0, G1 ⊂ P separately generic
over the ground model, both containing p, such that τ/G0 Ē σ/G1 and σ/G0 Ē
τ/G1. The pair σ, τ is nontrivial if P 
 ¬σ Ē τ .

Theorem 8.4.9. Let κ be a strongly inaccessible cardinal. Let E be an analytic
equivalence relation on a Polish space X. Suppose that Vκ satisfies

(*) in every forcing extension, there is a Ramsey ultrafilter preserving poset
with a nontrivial pair of E-interchangeable names or a nontrivial pair of
Ē-interchangeable names.

Then, in the model V (R)[U ], E is not linearly orderable.

Here, a poset P preserves Ramsey ultrafilters if for every Ramsey ultarfilter u,
the upwards closure of u generates a Ramsey ultrafilter in the P -extension.

Proof. I will start with a couple of abstract facts. Let u be a Ramsey ultrafilter
on ω. Let Qu be the usual c.c.c. partial order associated with the ultrafilter u.
That is, Qu is the poset of all conditions q = 〈tq, aq〉 where tq ⊂ ω is a finite
set, aq ∈ u, and r ≤ q if tq ⊂ tr, ar ⊂ aq, and tr \ tq ⊂ aq. The poset Qu adds
a generic set ȧgen ⊂ ω, the union of the first coordinates of conditions in the
generic filter. The set ȧgen diagonalizes u in the sense that it is modulo finite
included in every set in u. The following is the main forcing property of Ramsey
ultrafilters:

Fact 8.4.10. [22] In every forcing extension, if a ⊂ ω is an infinite set diago-
nalizing u then a is Qu-generic over V .

This fact enables an abstract trick typically used to determine the theory
of the model V (R)[U ]. Let V [g] be a generic extension of V via a poset of size
< κ. Suppose that V [g] |= u is a Ramsey ultrafilter. The following holds in
V [g], where R is the Q × Coll(ω,< κ) name for the poset P(ω) modulo finite,
and U̇ is the Ṙ-name for the generic ultrafilter on ω.

Claim 8.4.11. Suppose that φ is a formula with parameters in V [g] and one free
variable. Then, in the three step iteration Qu ∗ Coll(ω,< κ) ∗ Ṙ, the condition
〈1, 1, ȧgen〉 decides the formula φ(U̇).

Proof. Suppose for contradiction that this fails and let p = 〈p0, p1, p2〉 and
p′ = 〈p′0, p′1, p′2〉 be conditions below 〈1, 1, ȧgen〉 that decide the formula φ(U̇)
differently. Let h0 ⊂ Q and h1 ⊂ Coll(ω, κ) be mutually generic filters over
V [g] such that p0 ∈ h0 and p1 ∈ h1. In the model V [g][h0][h1], evaluate the set
p2 ⊂ ω. Since p ≤ 〈1, 1, ȧgen〉, the set p2 diagonalizes the Ramsey filter u ∈ V [g].
Thus, p2 is a set Qu-generic over V [u] by Fact 8.4.10. Adjusting the set p2 on
finitely many positions if necessary, I may assume that the filter h′0 ⊂ Qu
generic over V [u] defined by p2 meets the condition p′0. By 2.2.5, there is a filter
h′1 ⊂ Coll(ω,< κ) generic over V [g][h′0] such that V [g][h′0][h′1] = V [g][h0][h1]; h′1
may be chosen so as to contain the condition p′1. Consider the set p′2 ⊂ ω. Since
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p′ ≤ 〈1, 1, ȧgen〉, p′2 ⊂ p2. By the forcing theorem applied to the filters h0 × h1
and h′0 × h′1. in the model V [g][h0][h1], the conditions p′2, p2 are compatible
elements of P(ω) modulo finite which decide the statement φ(U̇) differently.
This is a contradiction.

Now I am ready to address the specific issues raised by the theorem. Sup-
pose for contradiction that E is linearly orderable in V (R)[U ]. In the model
V (R)[U ], every element is definable from a ground model parameter, a real,
and the ultrafilter U , since V (R)[U ] is a generic extension of the model V (R)
in which every element is definable from some ground model parameter and a
real number. Go back into the ground model. Suppose that some condition in
the iteration Coll(ω,< κ) ∗ P(ω) modulo finite forces that φ is a formula which
defines the linear ordering of the quotient space X/E. More specifically, φ is a
formula with a ground model parameter, some real parameters, parameter U ,
and two free variables such that the relation {〈x, y〉 ∈ X×X : φ(x, y)} ⊂ X×X
respects the equivalence relation E and induces a linear ordering on the quotient
space. For the simplicity of notation assume that the condition identifying φ
is the largest condition in the iteration. For the simplicity of notation assume
that the ground model parameter in φ is 0. Passing to a generic extension by
a poset of size < κ if necessary, I may assume that the real parameter of φ is
also in the ground model. For the simplicity of notation assume that the real
parameter is 0 as well. Passing to a further generic extension if necessary, I may
assume that the ground model contains a Ramsey ultrafilter u.

Use (*) above to find a u-preserving poset P and a nontrivial E-interchangeable
pair of P -names σ, τ in the ground model (the case of Ē-interchangeable names is
nearly identical). Since P preserves the Ramseyness of the filter u, Claim 8.4.11
applied in the P -extension shows that there is some condition p ∈ P such that
in the four step iteration P ∗Qu ∗ Coll(ω,< κ) ∗ Ṙ, the condition 〈p, 1, 1, ȧgen〉
decides the formula φ(σ, τ, U̇). Assume for definiteness that the decision is in
the affirmative. In some generic extension V [h] by a poset of size < κ, find
filters g0, g1 ⊂ P separately generic over V , both containing the condition p,
such that σ/g0 E τ/g1 and τ/g0 E σ/g1. Let k ⊂ Coll(ω,< κ) is a filter generic
over V [h], and in the model V [h][k] find a set a ⊂ ω which diagonalizes the filter
u. The following two formulas hold in the model V [h][k], where R is the poset
P(ω) modulo finite:

• a 
R φ(σ/g0, τ/g0, U̇). To see this, note that the set a is Qu-generic over
the model V [g0] since u still generates a Ramsey ultrafilter in that model
and Fact 8.4.10 applies. Moreover, V [h][k] is a Coll(ω,< κ)-extension of
V [g0][a] by Fact 2.2.5. Now, a 
R φ(σ/g0, τ/g0, U̇) follows from the choice
of the condition p and the forcing theorem applied in the ground model.

• a 
R φ(σ/g1, τ/g1, U̇). This is proved in the same way as the previous
item, with g1 replacing g0.

However, the two items contradict each other in view of the fact that φ is forced
to define a linear ordering on the quotient space X/E and σ/g0 E τ/g1 and
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τ/g0 E σ/g1.

Theorem 8.4.12. In the model V (R)[U ], F2 is not linearly orderable.

Proof. In ZFC, I will produce a proper, Ramsey ultrafilter preserving poset P
carrying a nontrivialpair of F̄2-interchangeable names. This will conclude the
proof of the theorem in view of Theorem 8.4.9.

Let Q be the countable support product of ω1 many Sacks posets. The poset
Q adds an uncountable set {xα : α ∈ ω1} ⊂ 2ω of Sacks generic reals. I will
identify this set with an F2-pinned Coll(ω, ω1)-name for an element of X which
enumerates all elements of this set. Let P = Q0 × Q1 be the product of two
copies of Q with their respective names σ0, σ1. Thus, a P -generic filter is given
by a double sequence 〈x0α, x1α : α ∈ ω1〉 of points in 2ω.

Claim 8.4.13. The names σ0, σ1 are Ē-interchangeable.

Proof. Let p ∈ P be an arbitrary condition. Thus, p = 〈q0, q1〉 where q0, q1 ∈ Q,
and strengthening p if necessary I may assume that supp(q0) = supp(q1) = α
for some ordinal α ∈ ω1. Consider the conditions q̄0 ≤ q0, q̄1 ≤ q1 ∈ Q obtained
in the following way. supp(q̄0) = α + α, and for every β ∈ α, q̄0(β) = q0(β)
and q̄0(α + β) = q1(β). Similarly, supp(q̄1) = α + α, and for every β ∈ α,
q̄1(β) = q1(β) and q̄1(α+ β) = q0(β).

Now, let a double sequence ~x = 〈x0α, x1α : α ∈ ω1〉 of points in 2ω be P -
generic over V meeting the condition p̄ = 〈q̄0, q̄1〉. Consider the double sequence
~y = 〈y0α, y1α : α ∈ ω1〉 given by y0β = x1α+β , y0α+β = x1β for all β ∈ α and

y0γ = x1γ for all γ > α + α, and similarly y1β = x0α+β , y1α+β = x0β for all

β ∈ α and y1γ = x0γ for all countable ordinals γ > α + α. The double sequence
~y is obtained by a ground model permutation of ~x and so is P -generic over
V . At the same time, the double sequence ~y also meets the condition p, and
{x0α : α ∈ ω1} = {y1α : α ∈ ω1} and {x1α : α ∈ ω1} = {y0α : α ∈ ω1}. This
confirms the statement of the claim.

Claim 8.4.14. The poset P preserves Ramsey ultrafilters.

Proof. This is fairly well-known on a folklore level. The first, weaker result
in this direction was provided by Laver [17], who showed that under Martin’s
Axiom there is a Ramsey ultrafilter preserved by P . This would be strong
enough for the purpose of the present proof. I will provide the argument for the
full statement with references to all major steps.

The poset P is a countable support product of ℵ1 many copies of the Sacks
forcing. Since every subset of ω in the P -extension already belongs to an ex-
tension given by countably many Sacks reals, it is enough to show that the
countable support product of countably many Sacks reals preserves Ramsey
ultrafilters.

The σ-ideal associated with the countable support product of countably
many Sacks reals is computed via [26, Theorem 5.2.6]; the only important part
of the conclusion is that the σ-ideal is Π1

1 on Σ1
1. The product is proper,
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bounding, and does not add independent reals by infinite-dimensional Halpern–
Läuchli theorem as proved in [17]. Posets with these properties preserve Ramsey
ultrafilters by [26, Theorem 3.4.1].

Theorem 8.4.15. In the model V (R)[U ], E2 is not linearly orderable.

Proof. In ZFC, I will produce a proper poset P preserving Ramsey ultrafilters
and a nontrivial pair of E2-interchangeable P -names σ, τ . This will conclude
the proof of the theorem in view of Theorem 8.4.9.

Let ω =
⋃
n In be a partition of ω into successive intervals. Write Xn = 2In

for every n ∈ ω and let X =
∏
nXn; the space X is naturally identified with

2ω via the bijection π : x 7→
⋃
x from X to 2ω. Let dn be the metric on Xn

given by dn(u, v) = { 1
m+1 : u(m) 6= v(m)}. Let µn be the normalized counting

measure on Xn multiplied by n+1. The concentration of measure computations
as in [21, Theorem 4.3.19] show that the sequence 〈In : n ∈ ω〉 can be chosen in
such a way that for every n > 0 and every a, b ⊂ Xn of µn-mass at least 1 there
are binary strings u ∈ a and v ∈ b such that dn(u, v) ≤ 2−n.

Let Tini be the tree of all finite sequences t such that for all n ∈ dom(t),
t(n) ∈ Xn. Finally, let P be the poset all all trees T ⊂ Tini such that the
numbers {µ|s|({u ∈ X|s| : sau ∈ T}) : s ∈ T} converge to ∞. The ordering is
that of inclusion.

The forcing P is of the fat tree kind studied for example in [2, Section 7.3.B]
or [26, Section 4.4.3]. It adds a generic point ẋgen ∈ X which is the unique
element of X which is a branch through all trees in the generic filter. Let
σ = π(ẋgen) ∈ 2ω and τ = 1 − σ ∈ 2ω. The following two claims complete the
proof.

Claim 8.4.16. The names σ, τ for a nontrivial E2-interchangeable pair.

Proof. As for every number n, σ(n) = 1− τ(n), the names are certainly forced
to be E2-inequivalent. The interchangeability uses the concentration of measure
assumptions.

Let T ∈ P be an arbitrary condition. Let V [H] be a forcing extension in
which P(P(ω))V is a countable set. The usual fusion arguments for the forcing
P as in [2, Section 7.3.B] show that in V [H], there is a tree S ⊂ T in PV [H] such
that all its branches yield P -generic filters over the ground model. Let s0 ∈ S
be a node such that all nodes of S extending s0 have the set of immediate
successors in S of submeasure at least 1. For simplicity of notation assme that
s0 = 0. By induction on n ∈ ω build nodes sn, tn ∈ S so that

• t0 = s0 = 0, tn+1 is an immediate successor of tn and sn+1 is an immediate
successor of sn;

• writing un, vn ∈ Xn for the binary strings such that san un = sn+1 and
tan vn = tn+1, it is the case that dn(un, 1− vn) ≤ 2−n.
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Once this is done, let x =
⋃
n sn and y =

⋃
n tn. These are branches through the

tree S, therefore P -generic over the ground model. The second item immediately
implies that σ/x E2 τ/y and τ/x =E2 σ/y as desired.

The induction step of the construction above is obtained as follows. Suppose
that tn, sn ∈ S have been found. Let a = {u ∈ Xn : sun ∈ S} and b = {v ∈
Xn : tan (1 − v) ∈ S}. Then, µn(a), µ(b) are both numbers greater than 1,
and therefore there are u ∈ a and v ∈ b such that dn(u, v) ≤ 2−n. Setting

sn+1 = san u and tan+1(1− v) completes the induction step.

Claim 8.4.17. The poset P preserves Ramsey ultrafilters.

Proof. The forcing properties of posets similar to P are investigated in [26,
Section 4.4.3]. [26, Theorem 4.4.8] shows that P is proper, bounding, and does
not add independent reals. The associated σ-ideal is Π1

1 on Σ1
1 by [26, Theorem

3.8.9]. Posets with these properties preserve Ramsey ultrafilters by [26, Theorem
3.4.1].

For most of the equivalence relations considered in this book, I do not know
if they are linearly orderable in the model V (R)[U ] or not. The following is just
a sample of my current ignorance:

Question 8.4.18. Is =J for the branch ideal J on 2<ω linearly orderable in
V (R)[U ]?

Question 8.4.19. Let α ∈ ω1 be a nonzero ordinal and let Fα be the Borel
equivalence relation with κ(Fα) = ℵα produced in Corollary 4.4.8. Is Fα linearly
orderable in V (R)[U ]?
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