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Abstract. Certain set theoretical notions cannot be split into finer subnotions.

0. Introduction

In this paper I want to show that certain set theoretic notions are terminal in the
sense that formulas commonly used with them cannot split the notions into finer
subnotions, or restated, that all representatives of these notions share the same
natural properties. This will be accomplished in two ways. First I will prove that
in the presence of large cardinals formulas of limited complexity cannot distinguish
different instances. Second, I will produce a model of ZFC+♦ in which different
instances are completely indiscernible, without any restriction on the complexity of
the formulas used. The model is the same for all notions considered and below I
call it the homogeneous model.

0.1. Ramsey ultrafilters. An ultrafilter F on natural numbers is called Ramsey
if for every partition of pairs of natural numbers into two classes there is a set in F
homogeneous for that partition. I will show that Ramsey ultrafilters share the same
natural properties. To do this I first identify three syntactically defined classes of
formulas.

A formula φ(~x) will be called an ultrafilter formula if its free variables are re-
served for ultrafilters and the validity of φ(~x) depends only on the Rudin-Keisler
equivalence classes of the ultrafilters on the sequence ~x, where ultrafilters F, G
are Rudin-Keisler equivalent if there is a permutation π : ω → ω such that
F = {π′′X : X ∈ G}. A formula φ(~x) is projective if its quantifiers range over
reals only. Here the free variables are reserved for sets of reals, and ultrafilters
are treated as sets of reals. And finally a formula φ(~x) is Σ2

1 if it is of the form
∃Y ⊂ R ψ(~x, Y ) where ψ is projective. Most properties of ultrafilters relevant to set
theory and topology are expressed by ultrafilter formulas. For example φ(~x) =“~x is
a sequence of pairwise nonequivalent Ramsey ultrafilters” is a projective ultrafilter
formula, φ(x) =“x is a Pℵ1

ultrafilter” is a Σ2
1 ultrafilter formula and φ(x) =“there

is a forcing extension in which x generates a Ramsey ultrafilter and all other Ram-
sey ultrafilters are equivalent to this one” is an ultrafilter formula which is neither
projective nor Σ2

1.
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Typeset by AMS-TEX
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0.1. Theorem.

(1) Suppose large cardinals exist and φ(~x) is a projective ultrafilter formula.
Then φ holds for none or for all sequences of pairwise nonequivalent Ramsey
ultrafilters of the appropriate length.

(2) Suppose large cardinals exist, the Continuum Hypothesis holds and φ(~x) is a
Σ2

1 ultrafilter formula. Then φ holds for none or for all sequences of pairwise
nonequivalent Ramsey ultrafilters of the appropriate length.

(3) Suppose φ(~x) is an arbitrary ultrafilter formula. In the homogeneous model,
φ holds for none or for all sequences of pairwise nonequivalent Ramsey
ultrafilters of the appropriate length.

In fact, I will prove much stronger statements than (1) and (2), showing that
relevant properties of Ramsey ultrafilters are the same in all set generic extensions.
If large cardinals exist and φ(~x) is a projective ultrafilter formula that holds in some
generic extension of some sequence of pairwise nonequivalent Ramsey ultrafilters
of the appropriate length, then it holds in all generic extensions of all sequences
of pairwise nonequivalent Ramsey ultrafilters of the appropriate length. And if
large cardinals exist and φ(~x) is a Σ2

1 ultrafilter formula that holds in some generic
extension of some sequence of pairwise nonequivalent Ramsey ultrafilters of the
appropriate length, then it holds in all generic extensions satisfying CH, of all
sequences of pairwise nonequivalent Ramsey ultrafilters of the appropriate length.

(1) and (2) above are variations on old results of Woodin [W1]. A strong version
of (1) has been known to Todorcevic and Di Prisco [Fa]. A model in which all
Ramsey ultrafilters satisfy the same projective ultrafilter formulas was produced
from a Mahlo cardinal by [La].

It is consistent with large cardinals and not CH that there be two Ramsey
ultrafilters, one of them is a Pℵ1

point and the other is not [Lo], so the assumption
of CH in (2) is necessary. It is also consistent with CH and large cardinals that
two Ramsey ultrafilters differ on a ∆2

2 ultrafilter formula [AS] and so (2) cannot
be much improved. However, it is quite possible that under a quotable hypothesis
such as ♦ Ramsey ultrafilters cannot be distinguished by an ultrafilter formula over
the model 〈Hℵ2

,∈〉.

0.2. Souslin trees. Call an ω1-tree T a free tree [AS, SZ] if for every finite
sequence ~t of pairwise incomparable elements of T the product tree

∏
n<lth(~t) T ↾

~t(n) has no uncountable antichain. So this is a certain strengthening of the notion
of a Souslin tree; while not all Souslin trees are free, it is not known whether an
existence of a Souslin tree implies the existence of a free tree. Call trees T, S
equivalent if the complete boolean algebras they determine are isomorphic and call
φ(x) a forcing formula if its validity depends only on the isomorphism type of the
boolean algebra determined by the poset x. The projective and Σ2

1 formulas in this
case gain meaning if we consider the trees coded as sets of reals. Thus for example
φ(x) =“x is not a free tree” is a Σ2

1 forcing formula.

0.2. Theorem. Theorem 0.1 holds with ultrafilter formulas replaced by forcing
formulas of one free variable and sequences of ultrafilters replaced with single free
trees.
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It is impossible in this case to pass to finite sequences of free trees. For example
under ♦ one can easily produce pairs T0, T1 and S0, S1 of distinct free trees which
differ on the Σ2

1 formula φ(x, y) =“x× y is not a Souslin tree”. It seems difficult to
concoct a natural Σ2

1 forcing formula on which two free trees could disagree in the
presence of large cardinals (and failure of the continuum hypothesis). The following
formula is a mildly plausible and at least remotely natural candidate: φ(x) = x °

there is a maximal almost disjoint family of size ℵ1.

0.3. Lusin sets. A version of Theorem 0.1 for Lusin sets fails. There are simply
several topologically distinguishable kinds of Lusin sets, so if we want a terminal
notion, it is necessary to strengthen the notion of a Lusin set appropriately. Call a
set S ⊂ R strong Lusin if for every number n and every meager set M ⊂ Rn there
is a countable set S′ ⊂ S such that no n-tuple of distinct elements of the set S \ S′

belongs to M. Moreover require that S has uncountable intersection with every
open set. This is a strengthening of the notion of a Lusin set considered previously
[T, Chapter 6]. It is not known whether an existence of a Lusin set implies the
existence of a strong Lusin set.

Strong Lusin sets are already hard to distinguish from each other, however I still
need to rule out one kind of them. Call a set S ⊂ R extendible strong Lusin if it
is strong Lusin and for no countable collection of meager finitary relations on R

does S contain a maximal free set with respect to these relations. This may sound
confusing at first, but in the presence of CH it is simply equivalent to saying that the
set S can be extended to a larger strong Lusin set by adding an uncountable number
of reals–hence the term. I do not know whether there can be a nonextendible strong
Lusin set.

Call two extendible strong Lusin sets equivalent if their symmetric difference
is countable and call a formula φ(x) a Lusin formula if it depends only on the
equivalence class of the set x.

0.3. Theorem. Theorem 0.1 holds with Lusin formulas of one free variable in
place of ultrafilter formulas and single extendible strong Lusin sets in place of se-
quences of Ramsey ultrafilters.

It is not hard to reformulate φ(x) =“x is an extendible strong Lusin set” as
a projective Lusin property of x. Again, one cannot strengthen Theorem 0.3 to
sequences of extendible strong Lusin sets, since under CH one can easily produce
pairs S0, S1 and T0, T1 of extendible strong Lusin sets such that S0 ∪ S1 is strong
Lusin while T0 ∪ T1 is not.

0.4. Diamond sequences. Call a sequence 〈rα : α ∈ ω1〉 of reals a good diamond
sequence if for every Borel relation B ⊂ Rℵ0 × R, every sequence 〈sα : α ∈ ω1〉 of
reals and every closed unbounded set C ⊂ ω1 there is an ordinal α ∈ C such that
either 〈{sβ : β ∈ α}, rα〉 ∈ B or else for no real r 〈{sβ : β ∈ α}, r〉 ∈ B holds. This
is just an innocent reformulation of the good old diamond principle that makes it
possible to formulate the absoluteness theorems in a succint and correct way. Call
two diamond sequences equivalent if the are equal on a closed unbounded set and
call φ(x) a diamond formula if its validity depends only on the equivalence class of
the diamond sequence x.
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0.4. Theorem. Theorem 0.1 holds with single good diamond sequences in place
of sequences of Ramsey ultrafilters and diamond formulas in place of ultrafilter
formulas.

0.5. Concluding remarks. I have not tried to minimalize the large cardinal
hypotheses needed for the proofs. For (1) of the theorems generally a class of
Woodin cardinals is enough, and for (2) the assumption of a class of measurable
Woodin cardinals is sufficient. The homogeneous model can be built from a variety
of large cardinal or determinacy assumptions. For the results in Theorems 0.1-
0.3(3) a weakly compact cardinal suffices. If one wants more homogeneity and
simpler forcing, one needs to use stronger initial assumptions, which is the road we
take. I do not know how to obtain Theorem 0.4(3) for diamond sequences without
the use of a huge cardinal. It is not clear whether any of the possible constructions
of the homogeneous model has a claim to canonicity.

This paper does not present all terminal notions that are known at this point.
In fact it seems that most notions whose representatives can be coded as sets of
reals have a strengthening that is in some interesting sense terminal. Let me just

mention two somewhat amusing combinations. Suppose φ(~F , T, S) is a formula
whose validity depends only on the equivalence class of ultrafilters on the sequence
~F , equivalence class of the ω1-tree T and the modulo nonstationary ideal equivalence
class of the set S ⊂ ω1. Then in the homogeneous model we build in Section 4

the statement φ(~F , T, S) holds the same for all choices of a sequence of pairwise
nonequivalent Ramsey ultrafilters, a free tree and a stationary costationary set.
This loosely translates into the old dictum: ultrafilters, Souslin trees and stationary
sets have nothing to do with each other. Another phenomenon is the following.
Suppose φ is a sentence which quantifies only over reals, Ramsey ultrafilters and
sets of equivalence classes of Ramsey ultrafilters. Then, granted large cardinals,
every two set generic extensions with infinitely many equivalence classes of Ramsey
ultrafilters agree on the sentence φ.

The notation in the paper follows the set theoretical standard as closely as pos-
sible. If ~x, ~y are finite sequences and φ is a formula then the expression “φ(~x, ~y)
coordinatewise” means “~x and ~y have the same length, say n, and for every i ∈ n
φ(~x(i), ~y(i)) holds”. If x is a set then Coll(x) is the poset of finite functions from ω
to x ordered by reverse inclusion. Add(1,ℵ1) is the poset of all countable functions
from ω1 to 2 ordered by reverse inclusion. The phrase “there is an external object
such that . . . ” stands for “In some generic extension there is an object such that
. . . ” or “for a large enough ordinal α, Coll(α) ° there is an object such that . . .
” If P is a forcing τ a P -name and G ⊂ P a filter then τ/G is the valuation of the
name τ with respect to the filter G–see [J3]. Generally a poset and the complete
Boolean algebra it determines are freely confused. If P is a poset and g ⊂ P then∧

g is the greatest lower bound of the set g in the complete Boolean algebra of
P. If Q is a regular subordering of P and H ⊂ Q is a filter then P/Q(H) is the
residue poset {p ∈ P : the projection of p into the poset Q belongs to the filter H}.
If several models V, V [G], M . . . of set theory are floating around, their respective
sets of reals are denoted by R ∩ V, R ∩ V [G], R ∩ M and their respective levels of
the cumulative hierarchy by Vα ∩V, Vα ∩V [G] . . . If 〈I, <〉 is a linearly ordered set,
F ⊂ P(I) is a filter and x ⊂ I is a set the phrase “x diagonalizes F” stands for
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∀y ∈ F∃i ∈ x {j ∈ x : i ≤ j} ⊂ y. ω1-trees grow downwards and are treated as sets
of functions from countable ordinals to ω ordered by reverse inclusion. For a tree
T the expression Tα stands for the α-th level of T.

1. Symmetric Extensions

In this section I will fix some notation and terminology concerning choiceless
extensions of models of set theory. Most of the results were no doubt known before,
but I could not find a suitable reference.

Let P be a forcing, τ a P -name and X an external transitive set. I wish to
characterize in terms of the theory of the model V (X) exactly when there can be
an external V -generic filter G ⊂ P such that τ/G = X. Work in V (X).

Let Y ∈ V be the set of all names mentioned in τ, that is Y = {σ : ∃p ∈
P 〈p, σ〉 ∈ τ}. The exact formula for Y may vary according to which manifestation

of forcing names one is working with, the idea is that P ° τ̌ /Ġ ⊂ {σ/Ġ : σ ∈ Y̌ }.
By transfinite induction on the ordinal α build partial orders Qα ∈ V (X) as follows.

(1.a) Q0 is the set of all pairs 〈p, g〉 such that p ∈ P and g is a function such
that dom(g) ⊂ X is finite, rng(g) consists of finite subsets of Y and for
every two sets x0, x1 ∈ X and every two names σ0 ∈ g(x0), σ1 ∈ g(x1) the
following four conditions are satisfied: x0 = x1 ↔ p ° σ0 = σ1, ¬x0 = x1 ↔
p ° ¬x0 = x1, x0 ∈ x1 ↔ p ° σ0 ∈ σ1 and ¬x0 ∈ x1 ↔ p ° ¬σ0 ∈ σ1.
The ordering is defined by 〈p, g〉 ≥ 〈q, h〉 if p ≥ q in the poset P , dom(g) ⊂
dom(h) and ∀x ∈ dom(g) g(x) ⊂ h(x).

(1.b) Qα+1 is the set of those conditions 〈p, g〉 ∈ Qα for which: for every open
dense set D ⊂ P in V , every finite set a ⊂ X and every finite set b ⊂ Y
there is a condition 〈q, h〉 ≤ 〈p, g〉 in Qα such that q ∈ D, a ⊂ dom(h) and
for every name σ ∈ b either q ° ¬σ ∈ τ or else σ ∈

⋃
rng(h). The ordering

is inherited from Q0.
(1.c) Qα =

⋂
β∈α Qβ for limit ordinals α.

Since the posets Qα are inclusion decreasing, the construction has to stabilize at
some point. Let Q denote this stable value. In general, the poset Q can be empty
and very frequently it fails to be separative.

1.1. Definition. Suppose P, τ, X are a poset, a P -name and an external transitive
set respectively. We say that V (X) is a τ -extension of V if the stabilizing value Q
as above is not empty. If X is not a transitive set we note V (X) = V (trcl(X)) and
say that V (X) is a τ -extension of V if V (trcl(X)) is a trcl(τ)-extension of V.

It is important to observe that Q 6= 0 is purely a fact of the theory of the model
V (X) with parameters P, τ, X and P(P )∩V. The following theorem shows that the
terminology chosen is sound.

1.2. Theorem. Suppose P, τ, X are a poset, a P -name and an external set re-
spectively. V (X) is a τ -extension of V if and only if there is an external V -generic
filter G ⊂ P such that τ/G = X.

Proof. A straightforward check. Without loss of generality the set X can be as-
sumed transitive. For the left to right direction, suppose the construction of posets
Qα stabilized at some ordinal β so that Q = Qβ = Qβ+1 6= 0. Choose an external
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V (X)-generic filter H ⊂ Q and let G = {p ∈ P : 〈p, 0〉 ∈ H}. The following can be
routinely checked from the fact that Qβ = Qβ+1 :

(1.d) G ⊂ P is a V -generic filter
(1.e) τ/G = X
(1.f) H = {〈p, g〉 ∈ Q : p ∈ G and ∀x ∈ dom(g)∀σ ∈ g(x) x = σ/G} so

G ∈ V (X)[H] and X, H ∈ V [G] and V [G] = V (X)[H].

For the right to left direction suppose G ⊂ P is an external V -generic filter such
that τ/G = X. Then the set H = {〈p, g〉 ∈ Q0 : p ∈ G and ∀x ∈ dom(g)∀σ ∈
g(x) x = σ/G} is included in all the sets Qα as verified by induction on α. Thus the
stabilizing value Q must be nonempty. In fact, one can invoke forcing theorem and
the first paragraph of this proof to show that H ⊂ Q is a V (X)-generic filter. ¤

For reasons obvious from the previous proof I will denote the stabilizing value
Q by P/τ(X).

1.3. Definition. A P -name τ is called homogeneous if for all conditions p0, p1 ∈ P
there are strengthenings q0 ≤ p0 and q1 ≤ p1 in RO(P ) and an isomorphism
π : RO(P ) ↾ q0 → RO(P ) ↾ q1 such that q1 ° π(τ) = τ . See [J2] for the natural
definition of extension of the isomorphism π to the space of all P -names.

Obviously if φ is a formula, x0 . . . xn are sets and τ is a homogeneous P -name
then all conditions in P decide the value of φ(x̌0 . . . x̌n, τ) in the same way and in
fact this is the only fact about homogeneous names that I will use. If P ° V (τ) |=
φ(x̌0 . . . x̌n, τ) I will frequently write τ ° φ(x̌0 . . . x̌n, τ) and by Theorem 1.2 this
notation will have the expected meaning: in all τ -extensions V (X) the formula
φ(x0 . . . xn, X) holds.

1.4. Theorem.

(1) Suppose τ is a homogeneous P -name and V (X) is a τ -extension of V .
Then for any condition p ∈ P there is an external V -generic filter G ⊂ P
containing p such that τ/G = X.

(2) Suppose P, Q are posets, τ, σ are P, Q names respectively, τ is homogeneous
and Q ° V (σ) is a τ̌ -extension of V. Then for any conditions p ∈ P, q ∈ Q
we have: for every external V -generic filter G ⊂ P containing p there is
an external V -generic filter H ⊂ Q containing q such that τ/G = σ/H and
vice versa, for every external V -generic filter H ⊂ Q containing q there is
an external V -generic filter G ⊂ P containing p such that τ/G = σ/H.

Proof. First show that if τ is a homogeneous P -name then τ ° ∀p ∈ P 〈p, 0〉 ∈
P/τ̌(τ). If this were not the case then by homogeneity there would be some fixed
condition p ∈ P such that τ ° ¬〈p̌, 0〉 ∈ P/τ. Then choose an external V -generic
filter G ⊂ P containing p and note that writing X = τ/G we have V (X) |= 〈p, 0〉 ∈
P/τ(X) as in the proof of Theorem 1.2. Contradiction.

Now (1) follows. Just force the filter G ⊂ P below the condition 〈p, 0〉 ∈ P/τ(X)
in V (X). (2) is very similar. Argue by homogeneity of the name τ that τ ° ∀q ∈
Q 〈q̌, 0〉 ∈ Q/σ̌(τ) and then force the desired filters G, H as in (1). ¤

Let me now give a few examples of homogeneous τ -extensions.
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1.5. Example. Suppose κ is an inaccessible cardinal, P = Coll(ω, < κ) and
denote by κsym the P -name for all reals of the extension. Then κsym is a homo-
geneous name and whenever V (R∗) is an extension such that R∗ = R ∩ V (R∗) and
V (R∗) |= κ = ℵ1 and every real is generic over V using a poset of size < κ then
V (R∗) is a κsym-extension of V . This is most easily proved by directly exhibiting
the remainder forcing P/κsym(R∗). Work in V (R∗) and let Q = {g : for some ordinal
α ∈ κ g ⊂ Coll(ω, < α) is a V -generic filter} ordered by reverse inclusion. Suppose
H ⊂ Q is a V (R∗)-generic filter. Elementary density arguments show that the filter
G =

⋃
H ⊂ P is a V -generic filter and R∗ ⊂ V [G] ∩ R. Moreover, V [G] ∩ R ⊂ R∗

since by the κ-c.c. of the poset P in V every real r ∈ V [G] belongs to the model
V [G ∩ Coll(ω, < α)] for some ordinal α ∈ κ; but G ∩ Coll(ω, < α) ∈ V (R∗) and
so r ∈ R∗. It follows that R∗ = V [G] ∩ R and by Theorem 1.2 V (R∗) is a κsym-
extension of V. While it is not literally true that P/κsym(R∗) = Q it can be proved
that the two posets’ completions are isomorphic. It should be noted that if V |=AC
then V |= κsym °DC. I will frequently use the following well known fact.

1.6. Claim. If V (R∗) is a κsym-extension of V and x ∈ V (R∗) is a bounded subset
of κ then V [x](R∗) is a κsym-extension of V [x].

1.7. Example. Suppose T is a free tree, P is the finite support product of ω many
copies of T and let Tsym be the P -name for the set of the infinitely many branches
of T added. Then Tsym is a homogeneous name and whenever b is an external set
of cofinal branches of the tree T such that

⋃
b = T then V (b) is a Tsym-extension

of V. For consider the forcing Q consisting of all finite injections from ω into the
set b ordered by reverse inclusion. Then Q ∈ V (b) and if H ⊂ Q is a V (b)-generic
filter then

⋃
H : ω → b is a bijection which naturally induces a V -generic filter

G ⊂ P such that Tsym/G = b. To verify the genericity of the filter G ⊂ P suppose
f ∈ Q and D ⊂ P is an open dense subset in V. I will find conditions g ∈ Q
and p ∈ D such that f ⊂ g, dom(p) ⊂ dom(g) and ∀n ∈ dom(p) p(n) ∈ g(n), so

g °Q p̌ ∈ Ġ∩Ď. Note that conditions in P are finite functions from ω to the tree T.
By a genericity argument applied in the model V (b) to the forcing Q, the filter G
must then be V -generic. To get the conditions g, p note that by the freeness of the
tree T the branches in rng(f) are mutually V -generic, so there must be a condition
p ∈ D with ∀n ∈ dom(f)∩ dom(p) p(n) ∈ f(n). Since

⋃
b = T it is possible to find

an injection g ∈ Q with f ⊂ g, dom(p) ⊂ dom(g) and ∀n ∈ dom(p) p(n) ∈ g(n), as
desired.

It should be noted that the model V (b) fails to satisfy the axiom of dependent
choice–the set b is Dedekind finite in that model. Also, b contains all the cofinal
branches of the tree T in the model V (b) and R ∩ V = R ∩ V (b).

1.8. Example. Let P be the product of infinitely many copies of the Cohen
forcing 2<ω with finite support and let csym be the name for the infinitely many
Cohen reals added. By roughly the same argument as in the previous example it
follows that if X is a dense subset of reals such that finite subsets of X are mutually
Cohen generic over V then V (X) is a csym-extension of V.

2. The nonstationary tower

Basic familiarity with the nonstationary tower techniques is assumed through-
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out. A good source is [FM]. In this section I will prove the main facts about the
nonstationary tower that will be used in later sections. The results are all due to
W. Hugh Woodin. The first lemma is well known.

2.1. Lemma. [W2, FM] Suppose κ ∈ λ are Woodin cardinals.

(1) There is a condition qκ ∈ Q<λ such that qκ is compatible with every element

of Q<κ and qκ ° Ġ ∩ Q̌<κ is a generic subset of Q̌<κ.

Suppose moreover that κ is a weakly compact Woodin cardinal. Then

(2) Q<κ ° V (Ṙ) is a κsym-extension of V.

(3) Let V (R∗) be a κsym-extension of V . The residue forcing Q<κ/Ṙ(R∗) has
a dense subset isomorphic to D = {g : for some Woodin cardinal α ∈ κ of
V, g ⊂ Q<α is a V -generic filter} ordered by reverse inclusion, where the
V -generic filter on Q<κ is to be obtained as a union of the V (R∗)-generic
filter on D.

2.2. Theorem. Suppose κ ∈ λ are a measurable Woodin and a Woodin cardinal
respectively. Then there is a condition a in the full nonstationary tower P<λ such
that a forces the following.

(1) κ̌ = ℵ1

(2) Ġ ∩ Q̌<κ is a V -generic filter
(3) there is a closed unbounded set C ⊂ κ̌ such that every ordinal in C is a

weakly compact Woodin cardinal in V and for every limit point α of C
including α = κ̌ the set C ∩ α diagonalizes the weakly compact filter on α
as evaluated in V .

This theorem is the main tool for establishing Σ2
1 absoluteness results. Before I

prove it, let me show how it is used.

2.3. Lemma. Assume the continuum hypothesis. Then a ° R∩V [Ġ] = R∩V [Ġ∩

Q̌<κ] and so V (Ṙ) is a κsym-extension of V.

Proof. Fix an enumeration e : ω1 → R ∩ V of the reals in the ground model and
choose a generic filter G ⊂ P<λ containing the condition a. Writing j : V → M for
the associated generic ultrapower we find that the following diagram commutes:

V
j

−−−−→ M
∥∥∥

xk

V
i

−−−−→ N

where i : V → N is the generic ultrapower associated with the V -generic filter
G∩Q<κ and k[f ]G∩Q<κ

= [f ]G. Now the critical point of the elementary embedding
k must be above κ since κ = ℵN

1 = ℵM
1 , and so j(e) = k(i(e)) = i(e). However,

by the elementarity of j and i the range of i(e) = j(e) contains all the reals in the
models M and N and so these models share the same reals. The basic facts about
the nonstationary ultrapower imply that R ∩ V [G ∩ Q<κ] = R ∩ N = R ∩ M =
R∩V [G]. The proof of the lemma is concluded by a reference to Lemma 2.1(2). ¤
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The set C ⊂ κ of Theorem 2.2(3) is a poor man’s Radin-generic club for a
sequence of measures with a repeat point at κ. Such a club could be procured
at the expense of increasing the large cardinal assumptions on κ and introducing
another heap of technology into the proof. The basic application of the properties
of the set C is

2.4. Lemma. Assume the continuum hypothesis. Then a ° for every generic

extension V [g] of V using a poset of size < κ the forcing Q
V [g]
<κ /Ṙ has a σ-closed

dense subset.

Proof. Let G ⊂ P<λ be a generic filter containing the condition a, let P ∈ Vκ be a
poset and let g ⊂ P, g ∈ V [G] be a V -generic filter. Then

(2.a) V [g] |= κ is a measurable Woodin cardinal and so Q<κ ° V [g](Ṙ) is a
κsym-extension of V [g], by Lemma 2.1(3), and

(2.b) V [g](R∩V [G]) is a κsym-extension of the model V [g] by Lemma 2.1(2) and
Claim 1.6.

So one can calculate the remainder poset Q
V [g]
<κ /Ṙ(R ∩ V [G]) as in Lemma 2.1(3).

Now let C ⊂ κ be a club in V [G] from Theorem 2.2(3). Note that for every
large enough ordinal α ∈ κ if α is a weakly compact Woodin cardinal in V then
it is such a cardinal in V [g] and the weakly compact filter on α as evaluated in
V [g] is generated by this filter as evaluated in V. Therefore passing to a tail of C if
necessary we may assume that the set C has the properties of Theorem 2.2(3) with
V replaced by V [g].

I claim that the set D = {h ⊂ Q
V [g]
<α : α ∈ C and h is V [g]-generic filter} is

a σ-closed dense subset of the poset Q
V [g]
<κ /Ṙ(R ∩ V [G]) as computed in Lemma

2.1(3). This will complete the proof. The density of D is clear. For the closedness

assume that hn ⊂ Q
V [g]
<αn

is a descending chain of conditions in D. There is just

one candidate for its lower bound, namely the filter h =
⋃

n hn ⊂ Q
V [g]
<α where

α =
⋃

n αn. Since the ordinals αn for n ∈ ω were elements of the closed set C so
must be their supremum α, and the only thing left to verify is the V [g]-genericity

of the filter h. So assume A ⊂ Q
V [g]
<α is a maximal antichain in V [g]. The set

{β ∈ α : A∩Q
V [g]
<β is a maximal antichain in the poset Q

V [g]
<β } belongs to the weakly

compact filter on α, so there must be an integer n ∈ ω such that the ordinal αn

belongs to this set. By the genericity of the filter hn then, hn ∩A∩Q
V [g]
<αn

6= 0, and
since hn ⊂ h we have h ∩ A 6= 0 as desired. ¤

Finally, to prove Theorem 2.2, choose an inaccessible cardinal θ between κ and
λ. By standard nonstationary tower arguments it is enough to show that the set a
is stationary, where a consists of those elementary submodels M of Hθ for which
κ ∈ M, o.t.M ∩ κ = ω1 and there is a relatively closed unbounded set CM ⊂ M ∩ κ
such that for every α ∈ CM , α is a weakly compact Woodin cardinal, the model
M is selfgeneric at α, and if α is a relatively limit point of CM including the case
α = κ then the set CM ∩ α diagonalizes the weakly compact filter at α intersected
with M.

So suppose f : H<ω
θ → Hθ is a function; a closure point M ∈ a must be

found. To this end, choose a normal measure U on κ and a countable submodel
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M0 ≺ 〈Hθ,∈, f〉 containing κ and U as elements. By induction on α ∈ ω1 build
countable models Mα and ordinals γα ∈ κ so that

(2.c) if α ∈ β then Mα ⊂ Mβ and Mβ ∩ Vκ endextends Mα ∩ Vκ, that is to say
∀x ∈ Mα ∩ Vκ x ∩ Mα = x ∩ Mβ

(2.d) if α 6= 0 then Mα is selfgeneric at κ–see [FM] for the definition
(2.e) γα = min(κ∩Mα+1 \Mα), γα ∈

⋂
(Mα ∩U), Mα+1 ∩Vγα+1 = {A∩Vγα+1 :

A ∈ Mα∩Vκ+1} and the weakly compact filter at γα intersected with Mα+1

is included in the set {A ∩ γα : A ∈ Mα ∩ U}
(2.f) Mβ =

⋃
α∈β Mα for limit ordinals β ∈ ω1.

This is not hard to do. To obtain the model Mα+1 and the ordinal γα from the
model Mα, first get a model Mα.5 and an ordinal γα satisfying (2.c,e). Look at the
ultrapower i : V → N associated with the measure U and compare the models iMα

and Mα ∩N ∩Hθ in the model N. The model Mα ∩N ∩Hθ ≺ 〈iHθ,∈, if〉 and the
ordinal κ satisfy (2.c,e) with respect to iMα in the model N, so by the elementarity
of the embedding i, there must be a model Mα.5 and an ordinal γα satisfying (2.c,e)
with respect to Mα. Once the model Mα.5 is obtained, one can get a model Mα+1

selfgeneric at κ such that Mα.5 ⊂ Mα+1 and Mα+1 ∩ Vγα+1 = Mα.5 ∩ Vγα+1 using
basic facts on the nonstationary tower. Such a model clearly satisfies all of (2.c,d,e).
Finally the selfgenericity of the models Mα survives at the limit stages due to the
requirement (2.c).

Now the model M =
⋃

α∈ω1
Mα is closed under the function f and it is an element

of the set a as witnessed by the set CM = {γα : α ∈ ω1}. For given an ordinal α ∈ ω1

the ordinal γα is weakly compact Woodin cardinal by the second requirement in
(2.e), the model M is selfgeneric at γα by (2.d) and the third requirement in (2.e)
applied at α. Furthermore, if α is a limit ordinal then by the second requirement of
(2.e) applied at ordinals β ∈ α the set {γβ : β ∈ α} diagonalizes the filter U ∩ Mα

and by the last requirement of (2.e) it must diagonalize the weakly compact filter
at γα intersected with M.

3. The absoluteness results

In this section the first two clauses of theorems mentioned in the introduction
are proved.

3.1. Ramsey ultrafilters.

The main property of Ramsey ultrafilters used throughout this paper is described
in the following well-known definition and lemma:

3.1.1. Definition. Suppose F is an ultrafilter on natural numbers. Define a
poset PF for the diagonalization of F by PF = {〈a, A〉 : a ⊂ ω is finite and A ∈ F}

ordered by 〈a, A〉 ≥ 〈b, B〉 if b endextends a and B ⊂ A. If ~F is a finite sequence
of ultrafilters then let P~F =

∏
n∈lth(~F ) P~F (n). A generic filter for P~F is naturally

identified with the finite sequence of subsets of ω it determines, which will be
denoted by ~xgen.

3.1.2. Lemma. [SS] Suppose ~F is a finite sequence of pairwise nonequivalent
Ramsey ultrafilters of length n and ~x is an external sequence of subsets of ω diago-

nalizing ~F coordinatewise. Then ~x is a generic sequence for the poset P~F .
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Recall also that there is a natural poset for adding a finite sequence of pairwise
nonequivalent Ramsey ultrafilters. Let

∏
P(ω)/fin be a product of finitely many

copies of the poset P(ω) ordered by modulo finite inclusion and let ~Fgen denote the
sequence of the generic filters.

3.1.3. Lemma.

(1)
∏

P(ω)/fin is a σ-closed poset

(2)
∏

P(ω)/fin ° ~Fgen is a sequence of pairwise nonisomorphic Ramsey ultra-
filters

(3) whenever φ is an ultrafilter formula then all conditions in
∏

P(ω)/fin de-

cide the validity of φ(~Fgen) in the same way.

Proof. All of this is well-known. For (3) argue by contradiction. If ~a,~b ∈
∏

P(ω)/fin

are conditions–finite sequences of infinite subsets of ω such that ~a ° φ(~Fgen) and
~b ° ¬φ(~Fgen) then strengthening the conditions if necessary one can find a se-

quence ~π of permutations of ω such that ~π′′~a = ~b coordinatewise. Now suppose

G ⊂
∏

P(ω)/fin is a generic filter containing the condition ~a. Let ~E ∈ V [G] be

the finite sequence of ultrafilters given by ~E = {~π′′x : x ∈ ~Fgen/G} coordinate-

wise and let H ⊂
∏

P(ω)/fin be the filter given by the equation ~Fgen = ~E. Then

H ⊂
∏

P(ω)/fin is a V -generic filter containing the condition ~b, V [G] = V [H]

and by the forcing theorem, V [G] = V [H] |= φ(~Fgen/G) ∧ ¬φ( ~E) while ~Fgen/G is

equivalent to ~E coordinatewise, contradicting the assumption that φ is an ultrafilter
formula. ¤

The basic connection between Ramsey ultrafilters and the nonstationary tower
is established in the following.

3.1.4. Lemma. Suppose ~F is a finite sequence of pairwise nonequivalent Ramsey
ultrafilters and κ is a weakly compact Woodin cardinal. Then

Q<κ ° j(~F ) is V (Ṙ)-generic subset of
∏

P(ω)/fin.

Here j denotes the canonical Q<κ generic ultrapower.

3.1.5. Corollary.

(1) Suppose there is a weakly compact Woodin cardinal. Then every finite se-
quence of pairwise nonequivalent Ramsey ultrafilters is a L(R)-generic sub-
set of

∏
P(ω)/fin.

(2) Suppose there is a weakly compact Woodin cardinal and φ(~x) is a projective

ultrafilter formula. Then for every finite sequence ~F of pairwise nonequiv-
alent Ramsey ultrafilters of the appropriate length,

φ(~F ) ↔ L(R) |=
∏

P(ω)/fin ° φ(~Fgen).

The corollary was known to Todorcevic and Di Prisco. It immediately implies
Theorem 0.1 (1)–the right hand side of depends only on the theory of L(R) which is
invariant under set forcing. The assumptions in the Corollary could be reduced to
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the existence of infinitely many Woodin cardinals. Consistency-wise the conclusion
of Corollary 3.1.5(1) is only as strong as the existence of a Mahlo cardinal.

Proof of Corollary. Suppose κ is a weakly compact Woodin cardinal, G ⊂ Q<κ a
generic filter and j : V → M the derived generic ultrapower. By the Lemma the

sequence j(~F ) is V (R ∩ V [G])-generic and so L(R ∩ V [G]) = L(R ∩ M)-generic.
But this is a fact of the theory of the model M and so it can be pulled back to the
ground model using the elementarity of the embedding j. (1) follows.

For (2) first note that any projective property of ~F is absolute between V and

the model L(R)[~F ]. Then (2) follows immediately from (1) and Lemma 3.1.3(3)
applied in the model L(R). ¤

Proof of the Lemma. Let V (R∗) be a κsym-extension of V and work in V (R∗).

Choose a condition g ∈ Q<κ/Ṙ(R∗). Thus for some Woodin cardinal α ∈ κ of V,
g ⊂ Q<α is a V -generic filter and one can form the generic ultrapower jg : V → Mg.
I will show

(3.1.a) for every sequence ~x diagonalizing the sequence jg(~F ) coordinatewise there

is a condition h ∈ Q<κ/Ṙ(R∗) such that g ⊂ h and h ° ~x ∈ j(~F ) coordi-
natewise, where j denotes the generic Q<κ ultrapower.

This will prove the lemma since it immediately follows that

(3.1.b) Q<κ/Ṙ(R∗) ° j(~F ) is a V (R∗)-generic subset of
∏

P(ω)/fin, and

(3.1.c)
∧

jg(~F ) is the projection of the condition g into the poset
∏

P(ω)/fin

associated with the name j(~F ).

Let me first deal with the following general situation. Suppose that β ∈ κ is any
Woodin cardinal of V between α and κ and that h ⊂ Q<β is an arbitrary V -generic
filter extending g, with jh : V → Mh denoting the generic ultrapower. Then

(3.1.d) V [g] |= jg(~F ) is a sequence of pairwise nonequivalent Ramsey ultrafilters

and g °Q<κ/Ṙ(R∗) jg(~F ) ⊂ j(~F ) coordinatewise

(3.1.e) V [h] |= jh(~F ) is a sequence of pairwise nonequivalent Ramsey ultrafilters,

jg(~F ) ⊂ jh(~F ) coordinatewise and h °Q<κ/Ṙ(R∗) jh(~F ) ⊂ j(~F ) coordinate-

wise
(3.1.f) V [h] |= there is a finite sequence ~x of subsets of ω coordinatewise diagonal-

izing the filter sequence jg(~F ) such that ~x ∈ jh(~F ) coordinatewise.

The proofs of (3.1.d) and (3.1.e) are the same, let me argue for (3.1.d). By the ele-

mentarity of the embedding jg, Mg |= jg(~F ) is a sequence of pairwise nonequivalent
Ramsey ultrafilters; but the model Mg has the same reals as V [g], so V [g] satisfies

the same sentence. For the second part note that g ∈ Q<κ/Ṙ(R∗) forces that the
Q<κ embedding j can be factored as k◦jg for some elementary embedding k and so

jg(~F ) = k′′jg(~F ) ⊂ kjg(~F ) = j(~F ) coordinatewise as desired. (3.1.f) follows from

the fact that the filters on the sequence jh(~F ) are P-points in the model V [h] and

the filters on the sequence jg(~F ) are their countable subsets.
Now the sequence ~x from (3.1.f) represents a V [g]-generic filter on Pjg(~F ) by

Lemma 3.1.2. It follows that in V [g] there is an embedding of Pjg(~F ) into the poset

Q = Q<β ↾ qα/Q<α(g) such that Q ° ~xgen ∈ i(~F ) coordinatewise where ~xgen is
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the name for the Pjg(~F ) generic sequence and i is the name for the Q<β generic

ultrapower.
Finally we can return to the proof of (3.1.a). Whenever ~x is a sequence of subsets

of ω diagonalizing the filter sequence jg(~F ) coordinatewise, it is V [g]-generic for the
poset Pjg(~F ) by Lemma 3.1.2. By the previous paragraph then one can find a V -

generic filter h ⊂ Q<β such that g ⊂ h and ~x ∈ jh(~F ) coordinatewise. By (3.1.e)

above, V (R∗) |= h °Q<κ/Ṙ(R∗) ~x ∈ j(~F ) coordinatewise as desired. ¤

Now for the Σ2
1 absoluteness. Assume that there is a class of measurable Woodin

cardinals. Assume that φ is a Σ2
1 ultrafilter formula, P0, P1 are posets, ~F0, ~F1 are

P0, P1 names respectively and

(3.1.g) P0 ° ~F0 is a sequence of the appropriate length of pairwise nonequivalent
Ramsey ultrafilters and the Continuum Hypothesis holds

(3.1.h) P1 ° ~F1 is a sequence of the appropriate length of pairwise nonequivalent

Ramsey ultrafilters and φ(~F1) holds.

For Theorem 0.1(2) it is enough to deduce from these assumptions that P0 ° φ(~F0).
To do that, choose cardinals κ ∈ λ, a measurable Woodin and a Woodin cardinal
respectively such that P0, P1 ∈ Vκ, and choose a V -generic filter g0 ⊂ P0 and a

V [g0]-generic filter G0 ⊂ P
V [g0]
<λ containing a condition a as in Theorem 2.2. It

must be proved that V [g0] |= φ(~F0/g0). Writing j : V [g0] → M for the G0-
generic ultrapower, by the elementarity of j this is the same as to show that M |=

φ(j(~F0/g0)).
To this end note that V [g0][G0] |= κ = ℵ1. So in this model one can find a

V -generic filter g1 ⊂ P1 and a sequence ~E of Ramsey ultrafilters such that j(~F0/g0)

is equivalent to ~E and ~F1/g1 ⊂ ~E coordinatewise. Write R∗ = R ∩ V [g0][G0]. By
Lemmas 2.3 and 3.4 applied in the model V [g0][G0],

(3.1.i) the sequence j(~F0/g0)–and so the sequence ~E as well–is a V (R∗)-generic
subset of

∏
P(ω)/fin and the model V (R∗) is a κsym-extension of V

and by Lemmas 2.1(2) and 2.4 applied in the model V [g1],

(3.1.j) V [g1] |= Q<κ ° V (Ṙ) is a κsym-extension of V and i(~F1/g1) is a V (Ṙ)-
generic subset of the poset

∏
P(ω)/fin, where i : V [g1] → M is the Q<κ

generic ultrapower.

So by Theorem 1.4(2) applied in the model V (R∗)[ ~E] the remainder poset

Q
V [g1]
<κ /Ṙ, i(~F1/g1)(R

∗, ~E) is nonempty and a direct calculation based on (3.1.c)
shows that it has a dense subset isomorphic to

(3.1.k) S = {h ⊂ Q
V [g1]
<α : α ∈ κ is a Woodin cardinal of V [g1], h is a V [g1]-generic

filter and jh(~F1/g1) = Mh∩ ~E coordinatewise, where jh : V [g1] → Mh is the
generic ultrapower associated with the filter h} ordered by reverse inclusion.

An argument almost identical to the one in Lemma 2.4 shows that for some club
C ⊂ κ in the model V [g0][G0] the set D ∈ V [g0][G0], D = {h ∈ S : for some α ∈ C

h ⊂ Q
V [g1]
<α is a V [g1]-generic filter} is a σ-closed dense subset of the poset S. Since

V [g0][G0] |= |P(S) ∩ V (R∗)[ ~E]| = ℵ1 one can find in V [g0][G0] a V (R∗)[ ~E]-generic

filter on S and a posteriori a V [g1]-generic filter G1 ⊂ Q
V [g1]
<κ such that writing
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i : V [g1] → N for the associated generic ultrapower, R ∩ V [g1][G1] = R ∩ N = R∗

and i(~F1/g1) = ~E.
Finally it is possible to chase the formula φ from the model V [g1] to V [g0] as

desired. Namely: V [g1] |= φ(~F1/g1) by the forcing theorem and (3.1.h). N |=

φ(i(~F1/g1)) by the elementarity of the embedding i. Since φ is Σ2
1, N ⊂ V [g0][G0]

and R∩N = R∩V [g0][G0], this means that V [g0][G0] |= φ(i(~F1/g1)). Since φ is an

ultrafilter formula and i(~F1/g1) = ~E is coordinatewise equivalent to the sequence

j(~F0/g0), necessarily V [g0][G0] |= φ(j(~F0/g0)). Since the models V [g0][G0] and M

agree on reals and sets of reals, it follows that M |= φ(j(~F0/g0)). And lastly, by the

elementarity of the embedding j it follows that V [g0] |= φ(~F0/g0), which is what
we set out to prove.

3.2. Free trees.

The proof in this case is a little different since equivalence of trees is a Σ2
1

statement while equivalence of ultrafilters is projective. The argument is based on
the following

3.2.1. Lemma. Suppose T is a free tree and α ∈ β are a measurable Woodin and
a Woodin cardinal respectively. Let g ⊂ Q<α be a generic filter and jg : V → Mg

be the associated ultrapower, and let b be an external collection of cofinal branches
of the tree jg(T ) such that

⋃
b = jg(T ). Then

(1) V [g] |= jg(T ) is a free tree
(2) there is an external V -generic filter h ⊂ Q<β such that g ⊂ h and b is

exactly the set of branches of jg(T ) that have lower bound in the tree jh(T )–
in other words (jh(T ))α = {

⋃
x : x ∈ b}–where jh : V → Mh is the generic

ultrapower associated with the filter h.

The hypotheses of the Lemma are not really optimal. For (1) is a Π1
1 statement

about Vα and so it reflects down at a measurable cardinal, and (2) really uses (1)
only. However I do not know how to prove (1) from Woodinness of α only.

Proof. For (1) note that by Theorem 2.2 there is an external V -generic filter G ⊂
P<β such that g ⊂ G and V [G] |= α = ℵ1. Writing i : V → N for the G-generic
ultrapower we have jg(T ) = i(T ) and N ∩ P(α) = V [G] ∩ P(α). So N |=“i(T ) =
jg(T ) is a free tree” by the elementarity of the embedding i, V [G] |=“jg(T ) is a free
tree” by the agreement between the models N and V [G], and finally V [g] |=“jg(T )
is a free tree” since V [g] ⊂ V [G].

For (2) work in V [g] and note that Q<β ↾ qα/Q<α(g) ° V [g](ċ) is a (jg(Ť ))sym-
extension of the model V [g], where ċ is the set of all cofinal branches of the tree
jg(T ) which have a lower bound in the tree i(T ) where i is the Q<β ultrapower.
This follows from Example 1.7, which by the same token implies that V [g](b) is a
(jg(T ))sym-extension of the model V [g]. The existence of the desired filter h ⊂ Q<β

then follows from Theorem 1.4. ¤

Towards the proof of Σ2
1 absoluteness for free trees, assume that there is a class

of measurable Woodin cardinals. Assume that φ is a Σ2
1 forcing formula, P0, P1 are

posets, Ṫ0, Ṫ1 are P0, P1 names respectively and

(3.2.a) P0 ° Ṫ0 is a free tree and the Continuum Hypothesis holds
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(3.2.b) P1 ° Ṫ1 is a free tree and φ(Ṫ1) holds.

For Theorem 0.2(2) it is enough to deduce from these assumptions that P0 °

φ(Ṫ0). To do that, choose cardinals κ ∈ λ, a measurable Woodin and a Woodin
cardinal respectively such that P0, P1 ∈ Vκ, and choose a V -generic filter g0 ⊂ P0

and a V [g0]-generic filter G0 ⊂ P
V [g0]
<λ containing a condition a as in Theorem

2.2. It must be proved that V [g0] |= φ(Ṫ0/g0). Writing j : V [g0] → M for the
G0-generic ultrapower, by the elementarity of j this is the same as to show that
M |= φ(j(Ṫ0/g0)).

Work in the model V [g0][G0]. Remember that κ = ℵ1 by Theorem 2.2 and that
the Continuum Hypothesis holds, since it holds in the model M by the elementarity
of the embedding j, and the models M and V [g0][G0] share the same reals and sets
of reals. Fix a V -generic filter g1 ⊂ P1 and a club C ⊂ κ as in Theorem 2.2(3). By
passing to a tail if necessary, we may assume that C consists of weakly compact
Woodin cardinals of V [g1] which satisfy Lemma 3.2.1(1), and that for every limit
point α of C including α = κ the weakly compact filter on α as evaluated in V [g1]
is diagonalized by the set C ∩ α. Finally, let {rα : α ∈ κ} be an enumeration of all
the reals in V [g0][G0].

By induction on α ∈ κ build ordinals γα ∈ C, filters hα and functions fα so that

(3.2.c) γα’s form a continuous strictly increasing sequence

(3.2.d) hα ⊂ Q
V [g1]
<γα

are continuously inclusion increasing V [g1]-generic filters and
rα ∈ V [g1][hα+2]

(3.2.e) fα’s are continuously inclusion increasing isomorphisms between the trees

{t ∈ j(Ṫ0/g0) : ∃β ∈ α t ∈ (j(Ṫ0/g0))γβ
} and {t ∈ iα(Ṫ1/g1) : ∃β ∈ α t ∈

(jα(Ṫ1/g1))γβ
}, where iα is the hα-generic ultrapower of the model V [g1].

To do this, at limit stages just take unions of the objects constructed so far.
The genericity of the filters survives this operation by an argument taken directly
from the proof of Lemma 2.4. At the successor stage α = α′ + 1 the cases of α′

successor and limit are treated differently. First, if α′ = α′′ + 1 is a successor, just
find an ordinal γα ∈ C such that the real rα′′ is V [g1][hα′ ]-generic for a poset of

size < γα and then choose a V [g1]-generic filter hα ⊂ Q
V [g1]
<γα

such that hα′ ⊂ hα

and rα′′ ∈ V [g1][hα]. It is a matter of a trivial surgery on the map fα′ to extend
it into a map fα satisfying the condition (3.2.e). Second, if α′ is limit define for

every node t ∈ (j(Ṫ0/g0))γα′
a cofinal branch xt of the tree iα′(Ṫ1/g1) to be the

upwards closure of the set {fα′(s) : s ⊂ t} in the tree iα′(Ṫ1/g1). Let b = {xt :

t ∈ (j(Ṫ0/g0))γα′
}. Lemma 3.2.1 shows that setting γα =the next element of the

set C above γα′ there must be a V [g1]-generic filter hα ⊂ Q
V [g1]
<γα

such that hα′ and

(iα(Ṫ1/g1))γα′
= {

⋃
x : x ∈ B}, where iα is the hα-ultrapower. The function fα is

then obtained as a union of fα′ and the function {t 7→
⋃

xt : t ∈ (j(Ṫ0/g0))γα′
}.

Once this is done, let G1 =
⋃

α∈κ hα and let F =
⋃

α∈κ fα. The filter G1 ⊂ Q
V [g1]
<κ

is V [g1]-generic and the function F is an isomorphism of the trees j(Ṫ0/g0) and

i(Ṫ1/g1) on the club {γα : α ∈ κ} ⊂ κ, where i : V [g1] → N is the G1-ultrapower.
Now chase the formula φ from the model V [g1] into V [g0] as in the end of the

previous subsection, using the fact that the trees j(Ṫ0/g0), i(Ṫ1/g1) are isomorphic
on a club, therefore they have to have isomorphic complete Boolean algebras and
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so must agree on the formula φ.
This completes the proof of Σ2

1 absoluteness for free trees. The projective ab-
soluteness is a consequence of this noting that projective statements are absolute
under the σ-closed forcing making the Continuum Hypothesis true.

3.3. Lusin sets.

The main property of extendible strong Lusin sets used below is stated in the
following.

3.3.1. Lemma. Let X ⊂ R be an extendible strong Lusin set, θ a large regular
cardinal and M a countable elementary submodel of Hθ containing the set X, with
the transitive isomorph denoted by M̄ . Then

(1) M̄(X \ M) is a csym-extension of the model M̄
(2) for every poset P ∈ M̄ there is an M̄ -generic filter g ⊂ P such that M̄ [g](X\

M) is a csym-extension of the model M̄ [g].

Of course, (1) is well known. One does not need the extendibility of the set X for
it, however (2) is exactly the property that distinguishes the extendible sets from
the hypothetical nonextendible ones.

Proof. Fix the model M. For (1) it is enough to show that every finite sequence x of
pairwise distinct reals in the set X ⊂ M consists of reals mutually Cohen over the
model M ; (1) then follows from Example 1.8. Suppose that |x| = n and O ⊂ Rn

is an open dense set in M. We must show that x ∈ O. Since the set X is strongly
Lusin there is a countable set a ⊂ X such that all sequences y of length n consisting
of pairwise distinct reals in X \ a belong to the set O. By elementarity such a set
a can be found in the model M, so a ⊂ M. Therefore x consists of reals in the set
X \ a and x ∈ O as desired.

For (2) fix a poset P ∈ M̄ and choose a countable model N ≺ Hθ such that
M̄ ∈ N. By elementarity N |= |P | = ℵ0 and there is an isomorphism π ∈ N
between the Cohen poset and a dense subset of P. Now extendibility of the set X
and (1) applied to the model N can be used to find a real number r /∈ X such that
the set (X \N)∪{r} consists of reals mutually Cohen over the model N. Let h ⊂the
Cohen poset be the N -generic filter associated with the real r and let g ⊂ P be the
upwards closure of the set π′′h ⊂ P in P. I claim that the filter h is as desired. First
of all it is M̄ -generic since it is even N -generic and M̄ ⊂ N. Second, we must prove
that any finite set x of reals in X \M consists of reals mutually Cohen generic over
the model M̄ [g]. Let x0 = x ∩ N and x1 = x \ x0. Then

(3.3.a) the reals in x0 are mutually generic over the model M̄ [g]. To see this note
that the filter g is N -generic, so M̄ [x0]-generic and apply a mutual geericity
argument.

(3.3.b) the reals in x1 are mutually Cohen generic over the model M̄ [h][x0] since
they are generic even over the model N [h].

(2) follows. ¤

Note also that there is a natural way of forcing a strongly Lusin set of reals by
countable approximations. Let PL be a poset consisting of pairs 〈a,O〉 where a is
a countable set of reals and O is a countable collection of open dense sets in the
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spaces Rn for various n ∈ ω, ordered by 〈a,O〉 ≥ 〈b,P〉 if a ⊂ b, O ⊂ P and for
every sequence ~x ⊂ b \ a and every open dense set D ⊂ Rn, D ∈ O,

(3.3.c) if the length of ~x is exactly n then ~x ∈ D
(3.3.d) if the length of ~x is m ∈ n then the set E ⊂ Rn−m, E = {~y : any sequence

combining the reals on ~y and ~x is an element of the set D} is open dense
and is in P.

The following is easy to verify.

3.3.2. Lemma.

(1) PL is a σ-closed notion of forcing and if G ⊂ PL is a generic filter then the
set Xgen =

⋃
{a : 〈a, 0〉 ∈ G} is an extendible strong Lusin set in V [G] from

which the filter G ⊂ PL can be reconstructed
(2) if φ is a Lusin formula then all conditions in PL decide the validity of

φ(Ẋgen) in the same way.

The connection between extendible strong Lusin sets and the nonstationary
tower is described in the following

3.3.3. Lemma. Suppose κ is a weakly compact Woodin cardinal and X ⊂ R is an
extendible strong Lusin set. Then Q<κ ° jX̌ is a V (Ṙ)-generic subset for the poset

ṖL.

Granted this lemma, Theorem 0.3(1,2) is proved almost exactly like Theorem
0.1(1,2) in Subsection 3.1.

Towards the proof of the Lemma, fix a κsym-extension V (R∗) of V and work in

V (R∗). Let α ∈ κ be a Woodin cardinal of V , let g ∈ Q<κ/Ṙ(R∗), g ⊂ Q<α be
a V -generic filter, let jg : V → Mg be the associated ultrapower and consider the
condition pg ∈ PL given by pg = 〈jg(X), {D : for some n ∈ ω, D ⊂ Rn is an open
dense set in the model V [g]}〉. Similarly as in Section 3.1 I will prove

(3.3.e) for every condition q ∈ PL with q ≤ pg there is a condition k ∈ Q<κ/Ṙ(R∗)

with k ≤ g such that k °“the filter on P̌L associated with the set j(X)
contains the condition q̌” where j is the name for the Q<κ ultrapower.

This shows that Q<κ/Ṙ(R∗) °“j(X) is a V (R∗)-generic set for P̌L” and pg is the
associated projection of the condition g into PL, completing the proof of the lemma.

First let me consider the following general situation. Suppose β ∈ κ is a Woodin
cardinal of V above α and h ⊂ Q<β is a V -generic filter such that g ⊂ h, with
jh : V → Mh denoting the associated ultrapower. Then

(3.3.f) V [g](jh(X) \ jg(X)) is a csym-extension of the model V [g]
(3.3.g) g °Q<κ/Ṙ(R∗) pg is in the filter on PL determined by the set j(X)

(3.3.h) Suppose P ∈ V [g] is a poset of size < β. Then there is in V [h] a V [g]-
generic filter k ⊂ P such that V [g][k](jh(X) \ jg(X)) is a csym-extension of
the model V [g][k].

I will prove (3.3.f). Note that it is enough to show that Ng(jh(X) \ jg(X)) is a
csym-extension of the model Ng, since Ng and V [g] share the same reals. Write
k : Ng → Nh for the usual factor embedding such that jh = k ◦ jg and choose an
inaccessible cardinal θ of V [g] between α and β. Then (3.3.f) follows from Lemma
3.3.1(1) applied in the model Nh to the cardinal k(θ), the countable model k′′(Hθ)

Ng



   

18 JINDŘICH ZAPLETAL

and the strong Lusin set jh(X). (3.3.g) follows from (3.3.f) and for (3.3.h) apply
the proof of Lemma 3.3.1(2) in the model V [h].

Now back to the proof of (3.3.e). Let q = 〈aq, bq〉 ∈ PL be any condition below pg.
By strengthening the condition q if necessary, we may assume that V [g](aq \ jg(X))
is a csym-extension of the model V [g]–this happens whenever the set aq \jg(X) ⊂ R

is dense by the definition of the condition pg and Example 1.8. Choose a Woodin
cardinal β ∈ κ of V above α. It follows from (3.3.f) and Theorem 1.4 that there is
a V -generic filter h ⊂ Q<β such that g ⊂ h and jh(X) = aq. Now choose a partial
order P ∈ V [h] so that the set bq is V [h]-generic for the poset P. Note that bq is
essentially a real and so–as V (R∗) is a κsym-extension of V [h]–it is possible to find
a Woodin cardinal γ of V between β and κ such that |P | < γ in V [h]. It follows
from (3.3.h) that there is a V -generic filter k ⊂ Q<γ such that h ⊂ k and bq ∈ V [k]
and V [h][bq](jk(X)\ jh(X)) is a csym-extension of the model V [h][bq]. Consider the
condition pk ∈ PL. By inspection pk ≤ q ≤ pg; moreover k °Q<κ/Ṙ(R∗) p̌k is in the

filter on P̌L determined by the set j(X) by (3.3.g) applied to the filter k, completing
the proof of (3.3.e) and the Lemma.

3.4. Diamond sequences.

Since our definition of good diamond sequences is somewhat nonstandard, it is
perhaps worth it to see that it has the expected content.

3.4.1. Lemma. There is a good diamond sequence if and only if ♦ holds.

Proof. Suppose first that diamond holds and 〈xα : α ∈ ω1〉 is the usual diamond
sequence, i.e. xα ⊂ α and for every set A ⊂ ω1 and every club C ⊂ ω1 there is an
ordinal α ∈ C such that A∩α = xα. A good diamond sequence must be produced.
Choose a bijection e between P(ω) and the set of all Borel relations on Rℵ0 × R,
for each ordinal α ∈ ω1 let aα = {s ⊂ ω : there is a nonzero limit ordinal β ∈ α
with n ∈ s ↔ β + n ∈ xα} and let rα be any real such that 〈aα, rα〉 ∈ e(xα ∩ ω) if
such exists, otherwise let rα = 0. It is trivial to verify that 〈rα : α ∈ ω1〉 is a good
diamond sequence.

Now assume that a good diamond sequence 〈rα : α ∈ ω1〉 is given and we want to
construct a diamond sequence of the usual kind. Fix any Borel bijection e between
R and the set of all models with universe ω, and for every ordinal α ∈ ω1, let
xα ⊂ α be a set such that the model e(rα) is isomorphic to 〈α,∈, xα〉 if such set
exists, and xα = 0 otherwise. Again, the easy verification that 〈xα : α ∈ ω1〉 is a
diamond sequence is left to the reader. ¤

The crucial property of good diamond sequences is described in the following
Lemma. The lemma granted, the proof of the absoluteness theorems is completed
in the same way as in Subsection 3.2.

3.4.2. Lemma. Suppose κ ∈ λ are a measurable Woodin and a Woodin cardinal
respectively and d is a good diamond sequence. Suppose g ⊂ Q<κ is a V -generic
filter and s is an external real number such that s is V [g]-generic via a poset of
size < λ. Then there is an external V -generic filter h ⊂ Q<λ such that g ⊂ h and
jh(d)(κ) = s, where jh is the h-generic ultrapower of V.

Proof. Work in V. Choose a Q<κ-name Ṗ for a poset in Vλ and let θ be an in-
accessible cardinal between κ and λ such that Ṗ ∈ Hθ. Consider the following
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set

(3.4.a) b = {M ≺ Hθ : M is a countable model containing κ and Ṗ which is self-
generic at κ, and letting¯: M → M̄ be its transitive collapse and k ⊂ Q̄<κ

be the M̄ -generic filter k = {ā : a ∈ Q<κ ∩ M and M ∩
⋃

a ∈ a} we have
that d(κ̄) is a M̄ [k]-generic real for the poset P̄ /k ∈ M̄ [k]}.

I will show that the set b is stationary, thus a condition in the poset Q<λ. Then
a standard nonstationary tower argument can be applied to see that b ° ḣ∩Q<κ is
a V -generic subset of Q<κ and the real jh(ď)(κ̌) is V [ḣ∩Q<κ]-generic via the poset

Ṗ /ḣ ∩ Q<κ. Here ḣ, jh are the Q<λ-names for the generic filter and the generic
ultrapower. So the external generic filter h ⊂ Q<λ required in the Lemma can be
obtained by forcing via the residue poset Q<λ ↾ b/ḣ ∩ Q<κ, jh(ď)(κ̌)(g, r).

So fix a function f : H<ω
θ → Hθ; a closure point of f in the set b must be

produced. Following the proof of Theorem 2.2. there is a submodel M ≺ 〈Hθ,∈, f〉
which is a continuous increasing union of countable submodels Mα for α ∈ ω1 each
of which is selfgeneric at κ and α ∈ β ∈ ω1 implies that Mβ ∩ Vκ end-extends
Mα ∩ Vκ. Let ¯ : M → M̄ be the transitive collapse map, M̄α the image of Mα

under the collapse map, and let k ⊂ Q̄<κ be the filter k = {ā : a ∈ Q<κ and
M ∩

⋃
a ∈ a}. By the assumptions, k is an M̄ -generic filter and also for each

α ∈ ω1 the set k∩M̄α ⊂ Q̄<κ∩M̄α is an M̄α-generic filter and M̄ [k] is a continuous
increasing union of the models M̄α[k] for α ∈ ω1. Coding the model M̄ [k] as an
ω1-sequence of reals it is not hard to see that there must be an ordinal α ∈ ω1 such
that the real d(M̄α ∩ ω1) is M̄α[k]-generic for the poset P̄ /k. The model Mα is the
required closure point of the function f in the set b. ¤

4. The homogeneous model

In the presentation of the homogeneous model, the author has three choices.
Either, start with an optimal assumptions–the weakly compact cardinal in many
cases–and construct the model using a heavy dose of Shelah’s amalgamation [S1].
Or, start with a supercompact cardinal, which makes the forcing easier to describe
and understand. Or, start with a model of ADR+θ regular and use the very simple
forcing extension by the countable support product of θ many copies of Add(1,ℵ1).
All of these three models have homogeneity properties for roughly the same notions.
I choose the second option as the golden middle between what can be considered
an extensive notational complexity or an exotic initial assumption.

4.1. The construction of the model.

Let κ be a supercompact cardinal with an inaccessible λ above it. Choose an
elementary embedding j : V → N such that j(κ) ≥ λ and j′′λ ∈ N . For every
ordinal α ∈ κ define a measure Uα on P<κVα by a ∈ Uα ↔ j′′Vα ∈ j(a). These are
normal measures which in a natural sense project onto each other: for α ∈ β ∈ λ
we have Uα = {a ⊂ P<κVα : ∃b ∈ Uβ a = {x ∩ Vα : x ∈ b}}.

Let V (R∗) be a κsym-extension of V and work in V (R∗). For every ordinal α ∈ λ
define a forcing Qα by setting

(4.1.a) if α is a successor then Qα = Add(1,ℵ1 = κ). This forcing is σ-closed and
adds a wellordering of the reals in ordertype κ.

(4.1.b) if α is limit then Qα = {〈f, a〉 : ∃γ ∈ κ f : γ → (P<κVα)V ) is a ⊂-
continuous increasing function, a ∈ Uα} ordered by 〈f, a〉 ≥ 〈g, b〉 if f ⊂
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g, b ⊂ a and ∀δ ∈ dom(g) \dom(f) g(δ) ∈ a. This forcing adds a κ-sequence
diagonalizing the measure Uα. In the definition of the forcing, note that
while the functional values of f are in V, the function f itself is generally
in V (R∗).

Define

P =
∏

α∈λ

Qα with countable support

Pβ =
∏

α∈β

Qα with countable support, and

P β =
∏

α=β∨β∈α∈λ

Qα with countable support

Thus P = Pβ × P β for every ordinal β ∈ λ. The following can be routinely
checked.

4.1.1. Lemma.

(1) the posets P, Pβ , P β are all homogeneous for β ∈ λ
(2) every P -name for a subset of R∗ is in fact a Pβ name for some β ∈ λ
(3) P does not add reals and forces choice, diamond and κ = ℵ1, λ = ℵ2.

Let G ⊂ P be a V (R∗)-generic filter. In the following subsections I will show that
the model V (R∗)[G] has the homogeneity properties mentioned in the introduction.

4.2. Ramsey ultrafilters.

Work in the model V (R∗). Suppose φ is an ultrafilter formula and ~F is a P -name
for a sequence of pairwise nonequivalent Ramsey ultrafilters. That the homogeneous
model described above satisfies the clause (3) of Theorem 0.1 will be obvious from
the following equivalence

(4.2.a) P ° φ(~F ) if and only if for every large enough ordinal β ∈ λ we have

P β × Add(1,ℵ1) ×
∏

P(ω)/fin ° φ(~Fgen)

since the right hand side does not depend on the choice of the sequence ~F . The
equivalence will be proved by showing that for each ordinal β such that κ+ω ∈ β ∈ λ

and ~F is a Pβ-name–see Lemma 4.1.1(2)–we have

(4.2.b) Pβ ° ~F is a V (R∗) generic filter on
∏

P(ω)/fin

(4.2.c) P β ×
∏

P(ω)/fin ° Pβ/~F (~Fgen) is a nontrivial poset of size ℵ1 with a
σ-closed dense subset, therefore isomorphic to Add(1,ℵ1)

It is not hard to argue from the homogeneity of the forcings P β , Add(1,ℵ1)
and

∏
P(ω)/fin that for the ultrafilter formula φ, all conditions in the forcing

P β ×Add(1,ℵ1)×
∏

P(ω)/fin must decide the validity of φ(~Fgen) in the same way.
Then the equivalence (4.2.a) follows from (4.2.c).

To prove (4.2.b) fix the name ~F and the ordinal β ∈ λ. Choose a large regular
cardinal θ ∈ λ and let M ≺ Vθ be an elementary submodel such that

(4.2.d) |M | = ℵ0 and M contains all the relevant objects. In particular, the name
~F is definable from an element of V and a real in M.

(4.2.e) M ∩ V ∈ V and ∀α ∈ β ∩ M M ∩ V ∩ Vα ∈
⋂

(Uα ∩ M)
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and suppose g ⊂ Pβ ∩M is an M -generic filter. Since we are working in a choiceless
environment, it is perhaps worth it to see that such models and filters are plentiful.

4.2.1. Claim. The set of models as in (4.2.d,e) is stationary.

Proof. Let f : V <ω
θ → Vθ be a function; we must produce a suitable closure point

for it. The function f is definable from some real r and an element x of Vλ ∩V and
the real r is V -generic for some poset P ∈ Vκ∩V. By the normality of the measures
Uα it is possible to choose in V an elementary submodel Z ≺ Vλ of size < κ such
that P, x ∈ Z and ∀α ∈ β ∩ Z Z ∩ Vα ∈

⋂
(Uα ∩ Z). By Theorem 1.2 there is an

external V -generic filter H ⊂ Coll(ω, < κ) such that R∗ = R∩V [H] and r ∈ Z[H].
We have

(4.2.f) Z[H] ∩ V = Z ∈ V by the κ-c.c. of the poset Coll(ω, < κ)
(4.2.g) Z[H] ∩ V (R∗) ∈ V (R∗) since the model is countable in V [H] and V [H] |=

V (R∗) is closed under countable sequences
(4.2.h) the model Z[H]∩Vθ ∩V (R∗) is closed under the function f since f ∈ Z[H].

Thus the model Z[H] ∩ Vθ ∩ V (R∗) is the required closure point of the function
f. ¤

Also,

4.2.2. Claim. The filter g ⊂ Pβ has a lower bound in Pβ.

Proof. For a successor ordinal α ∈ β ∩ M let pα =
⋃

(g ∩ Qα), and for a limit
α ∈ β ∩M let pα =

⋃
(g ∩Qα)∪ {M ∩ κ 7→ M ∩ Vα ∩ V }. (4.2.e) and the definition

of the forcing P then can be used that the function {α 7→ pα : α ∈ β ∩ M} is a
lower bound of the filter g ⊂ Pβ . ¤

Let ~f = ~F/g ∩ M coordinatewise. I will prove that

(4.2.i) for every sequence ~x of subsets of ω diagonalizing the sequence ~f of filters
coordinatewise, there is a lower bound p ∈ Pβ of the filter g such that

p ° ~x ∈ ~F coordinatewise.

This will show that Pβ ° ~F is a V (R∗)-generic filter on
∏

P(ω)/fin and
∧ ~f

is the projection of the condition
∧

g ∈ Pβ into
∏

P(ω)/fin associated with the

name ~F . (4.2.b) immediately follows. To prove (4.2.c) note that P β ° |Pβ | = ℵ1

and so Pβ ×
∏

P(ω)/fin ° |Pβ/~F (~Fgen)| = ℵ1. Using the result of [Fo], for
the σ-closedness it is then enough to show that in the generic extension by P β ×∏

P(ω)/fin the player II has a winning strategy in the descending chain game on

the poset Pβ/~F (~Fgen):

I p0 p1 . . .
II q0 q1 . . .

where p0 ≥ q0 ≥ p1 ≥ q1 ≥ . . . are conditions in the poset Pβ/~F (~Fgen) and II
wins if the chain of these conditions has a lower bound. The following claim is
instrumental for this. It also may explain the intuition behind the choice of the
forcing P.

4.2.3. Claim. P β ° there is a closed unbounded set of models M as in (4.2.d,e).

Proof. Fix a generic filter Gβ ⊂ P β and work in V (R∗)[Gβ ]. Let Z ≺ Hλ = Hℵ2

be a countable submodel containing all important objects. It is enough to show



  

22 JINDŘICH ZAPLETAL

that M = Z ∩ Vθ ∩ V (R∗) satisfies all of (4.2.d,e). (4.2.d) is immediate. For (4.2.e)
observe that Z contains the club subset of V V

θ added by the filter Gβ ∩ Qθ as an
element whence Z ∩Vθ ∩V ∈ V and Z ∩Vθ ∩V ∈

⋂
(M ∩Uθ). (4.2.e) for the model

M follows. ¤

Now let Gβ , ~Fgen be mutually generic filters on P β and
∏

P(ω)/fin respectively

and let C ∈ V (R∗)[Gβ ][~Fgen] be a closed unbounded set of models from the previous

claim. In the model V (R∗)[Gβ ][~Fgen] the player II wins the descending chain game
in the following way. At round n ∈ ω he first plays on the side a model Mn ≺ Hθ

and a filter gn ⊂ Pβ ∩ Mn so that

(4.2.j) Mn ∈ C and M0 ⊂ M1 ⊂ . . .
(4.2.k) gn is an Mn-generic filter containing the condition pn, g0 ⊂ g1 ⊂ . . . and

~Fgen ∩ Mn = ~F/gn ∩ Mn

and then plays qn =
∧

gn. This is easy to do and by the remark after his moves

really are in the poset Pβ/~F (~Fgen). In the end let M =
⋃

n Mn and g =
⋃

n gn.

Then M ∈ C by the closedness of the set C, ~Fgen ∩ M = ~F/g ∩ M by (4.2.k) and

therefore the condition
∧

g ∈ Pβ/~F (~Fgen) is a lower bound of all the conditions
played in the run of the game. The player II has won.

Thus the only thing left to prove is (4.2.i). Fix the model M and the M -generic
filter g ⊂ Pβ ∩M. Use (4.2.e) and the supercompactness of the measures to see that
writing M̄ for the transitive collapse of M and¯: M → M̄ for the collapse map,

(4.2.l) M̄ ∩ V ∈ V, the bar map restricted to M ∩ V is in V and Vβ̄+ω ⊂ M̄
(4.2.m) V (R∗ ∩ M) is a κ̄sym-extension of V
(4.2.n) let ḡ be the pointwise image of the filter g ⊂ Pβ under the bar map. Then

ḡ ⊂ P̄β is a V (R∗ ∩ M)-generic filter, ~f = F̄ /g and V (R∗ ∩ M)[ḡ] |= ~f is a
sequence of pairwise nonequivalent Ramsey ultrafilters.

Now Pβ ° ~F is a sequence of P-points and
∧

g ° ~f ⊂ ~F coordinatewise. There-
fore there must be a condition p ∈ Pβ below

∧
g and a sequence ~x of subsets of ω

such that ~x diagonalizes ~f and p ° ~x ∈ ~F coordinatewise. By Lemma 3.1.2, the
sequence ~x represents a V (R∗ ∩ M)[ḡ]-generic filter on the poset P~f . By standard

factoring facts about κsym, the model V (R∗) is a κsym-generic extension of the
model V (R∗ ∩ M)[ḡ][~x]. The homogeneity of the poset P~f and of the name κsym

and the last three sentences give

(4.2.o) V (R∗ ∩ M)[ḡ] |= P~f ° κsym ° there is a condition p ∈ Pβ below
∧

g such

that p ° ~xgen ∈ ~F coordinatewise. Here Pβ and ~F really stand for the

definitions of Pβ and ~F using elements of the model V (R∗ ∩ M).

Finally, (4.2.i) follows. If ~x is any sequence diagonalizing the filters in ~f coordi-
natewise then ~x represents a V (R∗∩M)[ḡ]-generic filter on the poset P~f and V (R∗)

is a κsym-extension of the model V (R∗ ∩ M)[ḡ][~x]. Thus (4.2.o) applies directly to

give a lower bound p ∈ Pβ of the filter g such that p ° ~x ∈ ~F coordinatewise as
desired.

4.3. Free trees. The case of free trees needs an additional trick. Work in a
general ZFC context for a while.



  

TERMINAL NOTIONS IN SET THEORY 23

4.3.1. Definition. [J1] Let S be the forcing adding a generic Souslin tree Ṫgen

via countable approximations. That is, S consists of sets a such that for some
ordinal α ∈ ω1 called dom(a) a is a countable subset of αω, ordered by a ≥ b if

dom(a) ∈ dom(b) and a = {f ↾ dom(a) : f ∈ b}. The generic ω1-tree Ṫgen is
obtained as the union of all conditions in the generic filter.

4.3.2. Definition. Given an ω1-tree T let PT be a forcing for adding a generic
isomorph of the tree T, that is, an S-generic tree Ṫgen and a function Ḟgen : Ť →

Ṫgen which is an isomorphism of the two trees on a club. The poset PT consists of
triples 〈a, c, f〉 where a ∈ S, c ⊂ dom(a) is a closed set and f is a level-preserving
isomorphism of the trees {t ∈ T : ∃α ∈ c t ∈ Tα} and {g ↾ α : g ∈ a and α ∈ c}, the
latter ordered by inclusion. The ordering is defined by 〈a0, c0, f0〉 ≥ 〈a1, c1, f1〉 if

a0 ≥ a1 in S, c1 endextends c0 and f0 ⊂ f1. The tree Ṫgen is obtained as the union

of first coordinates of conditions in the PT -generic filter and the isomorphism Ḟgen

is the union of third coordinates of conditions in the filter. The domain of Ḟgen is

the union of second coordinates of conditions in the generic filter denoted by Ċgen.

4.3.3. Claim.

(1) The posets S, PT are σ-closed of the size of continuum.

(2) PT ° Ṫgen is an S-generic tree and Ḟgen is an isomorphism of the trees Ť

and Ṫgen on the club Ċgen.
(3) If φ is a forcing formula then all conditions in the poset S decide the validity

of φ(Ṫgen) in the same way.

Now back to the model V (R∗). Suppose φ is a forcing formula and P ° Ṫ is a
free tree. I will show

(4.3.a) P ° φ(Ṫ ) just in case for every sufficiently large ordinal β ∈ λ, P β+1 ×

Add(1,ℵ1) × S ° φ(Ṫgen)

which will prove Theorem 0.2(3) since the right hand side of the equivalence is

independent of the choice of the name Ṫ .
So fix an ordinal β such that κ + ω ∈ β ∈ λ and Ṫ is a Pβ-name. Then

Pβ °CH+AC and so by Claim 4.3.3(1)Pβ ° the posets Qβ , Add(1,ℵ1) and PṪ are
isomorphic. Therefore the poset Pβ+1 = Pβ ×Qβ is naturally isomorphic to Pβ ∗PṪ

and for the sake of simplicity I will assume that Pβ+1 is actually equal to Pβ ∗ PṪ .

Let Ṫgen, Ċgen, Ḟgen be names for the generic objects added by the PṪ stage of that

iteration and note that Pβ+1 ° Ṫgen represents a V (R∗)-generic filter on the poset
S.

I will show that

(4.3.b) for every model M ≺ Vθ as in (4.2.d,e), every M -generic filter g ⊂ Pβ+1∩M ,

and every condition a ∈ S such that Ṫgen/g = {f ↾ α : f ∈ a and α ∈ M∩κ}
there is a condition p ∈ Pβ+1, p ≤

∧
(g ∩ Pβ+1) such that p ° ǎ is in the

S-generic filter determined by the tree Ṫgen.

The rest of the proof can be essentially copied from the previous subsection. Namely,
one shows that P β+1 × S ° Pβ+1/Ṫgen is a poset of size ℵ1 with a σ-closed dense

subset, and so isomorphic to Add(1,ℵ1). Consequently, P ° φ(Ṫgen) if and only if

P β+1 × Add(1,ℵ1) × S ° φ(Ṫgen); also P ° φ(Ṫgen) ↔ φ(Ṫ ) since the two trees



  

24 JINDŘICH ZAPLETAL

are isomorphic on a club via the map Ḟgen and φ is a forcing formula. This will
complete the proof.

So fix the model M and an M -generic filter g ⊂ Pβ+1 ∩ M as in (4.2.d,e), and
let¯: M → M̄ be the transitive collapse and ḡ the image of g under the collapse.
As in the previous subsection it can be verified that

(4.3.c) ḡ ⊂ P̄ is an M̄ -generic filter
(4.3.d) Vβ̄+ω ⊂ M̄ and so V (R∗ ∩ M) is a κ̄sym-extension of V and ḡ ⊂ P̄ is a

V (R∗ ∩ M)-generic filter
(4.3.e) V (R∗ ∩ M)[ḡ] |= T̄ /ḡ is a free tree.
(4.3.f) the filter g ⊂ Pβ+1 has a lower bound in the poset Pβ+1.

First let me consider the following general situation. Choose any lower bound
p ∈ Pβ of the filter g ⊂ Pβ such that it decides the κ̄-th level of the tree Ṫ to
be some b, naturally identified with some countable collection of cofinal branches
through the tree T̄ /ḡ. By Example 1.7, V (R∗ ∩M)[ḡ](b) is a (T̄ /ḡ)sym-extension of
the model V (R∗ ∩ M)[ḡ]. By Claim 1.6 V (R∗) is a Coll(b) ∗ κsym-extension of the
model V (R∗ ∩ M)[ḡ](b). By the forcing theorem and Claim 1.6,

(4.3.g) V (R∗ ∩M)[ḡ] |= (T̄ /ḡ)sym ° Coll((T̄ /ḡ)sym) ° κ̌sym ° there is a condition

p ∈ Ṗβ which is a lower bound of the filter ǧ ⊂ Ṗβ and p ° (T̄ /ḡ)sym is the

κ̄-th level of the tree Ṫ .

Now (4.3.b) follows. Suppose a ∈ S is a condition such that T̄gen/ḡ = (Ṫgen/g)∩
M = {f ↾ α : f ∈ a and α ∈ M ∩κ}. Consider the set b of all those cofinal branches
x of the tree T̄ /ḡ for which there is some function d ∈ a such that (F̄gen/ḡ)′′x ⊂ d
holds. By Example 1.7 V (R∗ ∩ M)[ḡ](b) is a (T̄ /ḡ)sym-extension of the model
V (R∗ ∩ M)[ḡ] and so by (4.3.g) there must be a condition p ∈ Pβ which is a lower

bound of the filter g ∩ Pβ and forces b to be the κ̄-th level of the tree Ṫ . Now let
c = C̄gen/ḡ ∪ {κ̄} and let f = (F̄gen/ḡ) ∪ {x 7→

⋃
((F̄gen/ḡ)′′x) : x ∈ b}. It is now

not hard to verify that pa〈a, c, f〉 is the lower bound of the filter g required for
(4.3.b).

4.4. Lusin sets.

At this stage it should not be unreasonable to assume that the reader can prove
Theorem 0.3(3) on his own along the lines of subsections 3.3 and 4.2.

4.5. Diamond sequences.

Here I have to assume that the embedding j : V → N the construction of the
model is almost huge, that is, j(κ) = λ. Note that this implies that λ is a limit of
inaccessible cardinals and more.

So work in the model V (R∗) and fix a P -name ḋ for a good diamond sequence.
I will prove two combinatorial facts about the name–Lemma 4.5.1 and 4.5.2–after
which the proof is almost the same as the one in subsection 4.3, with forcing a
generic isomorph of the sequence ḋ and so on.

Fix an ordinal β ∈ λ such that ḋ is a Pβ-name and choose a large inaccessible
cardinal θ0 between β and λ. Furthermore let M0 ≺ Vθ0

be an elementary submodel
such that

(4.5.a) M0 is countable, contains all relevant objects and M0 ∩ V ∈ V
(4.5.b) for every ordinal γ ∈ κ there is an inaccessible cardinal θ1 between θ0 and

λ and an elementary submodel M1 ≺ Vθ+

1

so that M1 endextends M0, for
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each α ∈ M1 ∩ θ1 + 1 M1 ∩ Vα ∩ V ∈
⋂

(Uα ∩ M1) and Vγ ∩ V is in the
transitive collapse of the model M1 ∩ V.

It is an easy exercise to use the almost hugeness of the embedding j along the
lines of Claims 4.2.1, 4.2.3 to get

4.5.1. Lemma. The set of models M0 as above is stationary and P β °this set
actually contains a club.

The key point is

4.5.2. Lemma. Suppose M0 is a model satisfying (4.5.a,b), g ⊂ Pβ ∩ M0 is a
M0-generic filter and r ∈ R∗ is a real. Then there is a lower bound of the filter g
in the poset Pβ such that it forces ř = ḋ(M̌0 ∩ κ̌).

Proof. Suppose this fails for some M0, g, r. Let¯: M0 → M̄0 be the transitive col-
lapse and ḡ the pointwise image of the filter g under the bar map. As in (4.2.l,m,n),
V (R∗ ∩ M0) is a κ̄sym-extension of V and ḡ ⊂ P̄β is a V (R∗ ∩ M0)-generic filter.
By Claim 1.6, there is an inaccessible cardinal γ ∈ κ of V (R∗ ∩M0)[ḡ] and a poset
Y of size < γ such that the real r is V (R∗)[ḡ]-generic for the poset Y.

Now a little forcing theory. The κsym ∗ Pβ extension of V satisfies the axiom of
choice and therefore [J3, Lemma 25.3] it is a Z-extension for some poset Z ∈ M0∩V.
Then V (R∗∩M0)[ḡ] is a Z̄-extension of V and there must be a Z̄-name τ̄ ∈ V whose
realization is Y . By the forcing theorem, there must be a condition z ∈ Z such that

(4.5.c) V |= z̄ °Z̄ κsym ° no lower bound of the filter ġ forces in Ṗβ the real ḋ(κ̄)

to be V Z̄-generic via the poset τ̄ .

By the assumptions (4.5.b) on the model M0 there are an inaccessible cardinal
θ1 and a model M1 ≺ Vθ+

1

so that (4.5.b) holds with our γ. Let τ ∈ M1 ∩ V be a

name such that its image under the transitive collapse of the model M1 is τ̄ . By
the properties of the model M1 in (4.5.b) and by (4.5.c) above,

(4.5.d) V |= X = {M ≺ Vθ1
∩ V : writing˜: M → M̃ for the transitive collapse of

the model M and Ṙ, ġ for the generic objects added by the forcing Z̃, we

have in Z̃ that z̃ ° κ̌sym ° in Ṗβ ,
∧

ġ ° the real ḋ(κ̃) is not V (Ṙ)[ġ]-generic
for the poset τ̃} ∈ Uθ1

.

Now let V (R∗)[Gβ ][Gβ ] be an extension such that Gβ ⊂ Pβ and Gβ ⊂ P β are
mutually V (R∗)-generic filters and the V -generic filter on the poset Z given by R∗

and Gβ contains the condition z. Work in the model V (R∗)[Gβ ][Gβ ]. Looking at
the structure Vθ1

∩ V (R∗)[Gβ ] we see that it can be decomposed as an increasing
continuous union of models 〈Mα : α ∈ ω1 = κ〉 with Mα∩V ∈ X since it has size ℵ1

and the poset Qθ1
adds a club through the set X. Coding this structure into an ω1

sequence of reals and using the definitory property of the good diamond sequence
d = ḋ/Gβ × Gβ , there must be an ordinal α ∈ κ such that the real d(Mα ∩ κ) is
Mα-generic for the poset τ/R∗, Gβ . However this contradicts the definition of the
set X from which the model Mα ∩ V comes. ¤

The rest of the proof follows closely subsection 4.3.
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