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Abstract

It is consistent relative to an inaccessible cardinal that ZF+DC holds,
the hypergraph of equilateral triangles on a given Euclidean space has
countable chromatic number, while the hypergraph of isosceles triangles
on R2 does not.

1 Introduction

This paper deal with chromatic numbers of hypergraphs of arity three on Eu-
clidean spaces. It has been known since the 1960’s that the chromatic number
of the hypergraph of equilateral triangles in R2 is countable in ZFC [2]. Erdős
asked whether the same is true for the hypergraph of isosceles triangles in R2.
On the way towards the solution of this problem, Schmerl first [6] gave a brief
argument that the chromatic number of the hypergraph of equilateral triangles
in any dimension is countable, later [7] gave an affirmative answer to the ques-
tion of Erdős, and eventually classified all algebraic hypergraphs of countable
chromatic number in a major breakthrough [8].

This paper is a commentary on this development of events. I will show that
Schmerl’s theorems appeared in order of increasing difficulty. Namely, I will
prove

Theorem 1.1. If the theory ZFC+there is an inaccessible cardinal is consistent,
then so is ZF+DC+for every number d ≥ 1, the hypergraph of equilateral trian-
gles in dimension d has countable chromatic number+the hypergraph of isosceles
triangles in R2 does not have countable chromatic number.

Theorem 1.1 greatly understates the understanding of the resulting models of
ZF+DC. They are obtained as balanced extensions of the choiceless Solovay
model. Therefore, as a matter of general properties of such models, they do not
contain e.g. maximal almost disjoint families [4, Theorem 14.1.1]. The posets
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generating them are (4, 3)-balanced (Corollary 3.12 and as a result, the models
do not contain any discontinuous homomorphisms between Polish groups [4,
Theorem 13.2.1]. In the model, every nonmeager (or non-null, in the sense of
the usual two-dimensional Lebesgue measure) subset of R2 contains an isosceles
triangle. It is possible to achieve the independence result for all dimensions si-
multaneously. The posets are d-Noetherian balanced, which makes it possible to
perform further dimension-specific analysis as in [9]. The inaccessible cardinal is
needed only to initialize the methodology of geometric set theory independence
proofs [4, Part II]; I doubt that it is necessary for the independence result.

There are many open questions in the area. The first one can be asked about
any algebraic hypergraph without perfect cliques. A negative answer is known
only for arity two, i.e. algebraic graphs without perfect cliques.

Question 1.2. Let d ≥ 2 be a number. In ZF+DC, does countable chromatic
number of hypergraph of equilateral triangles in Rd imply the existence of a
Vitali set?

The second question deals with a specific type of coloring. Given a hypergraph Γ
on a topological space X, a Γ-free neighborhood assignment is a map c assigning
to each point x ∈ X an open neighborhood of x in such a way that for every
hyperedge e ∈ Γ there is x ∈ e such that e 6⊆ c(x).

Question 1.3. Let d ≥ 2 be a number. Is there a balanced extension of
the Solovay model in which there is an equilateral-triangle-free neighborhood
assignment?

The terminology of the paper sticks to the standard of [3]. For a bounded
nonempty subset O of a Euclidean space, I write diam(O) for the supremum of
all Euclidean distances between the points in the set O.

2 Algebraic geometry

The proof uses several standard concepts from real algebraic geometry. To begin,
recall [5, Section 3.3] that the language of real closed fields includes symbols for
addition, multiplication and inequality. The theory of real closed fields includes
the axioms of an ordered field, the statement that squares are exactly the non-
negative elements, and the statements saying that every nontrivial polynomial
of odd degree has a root. The theory of real closed fields admits elimination of
quantifiers [5, Theorem 3.3.15]. For algebraic sets, we will need the following.

Definition 2.1. Let n ≥ 1 be a number, and let A ⊆ Rd be a set.

1. The set A is algebraic if it is of the form {z ∈ Rd : p(z) = 0} where p is a
polynomial with real coefficients;

2. the set A is irreducible if A ⊂ Rd is algebraic and whenever A = B ∪C is
a union of two algebraic sets, then either B = A or C = A;
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3. [1, Definition 3.3.3] a point x ∈ A is nonsingular in A if the dimension of
the Zariski tangent space to A at x has the smallest possible value dim(A),
where the dimension is as defined in [1, Definition 2.8.1].

The following fact records the basic results about algebraic sets and their non-
singular points.

Fact 2.2. Let n ≥ 1 be a number.

1. (Hilbert basis theorem) There is no infinite sequence of algebraic sets which
is strictly decreasing with respect to inclusion;

2. [1, Theorem 2.8.3] every algebraic set A ⊆ Rd has a unique decomposition
into irreducible components: A =

⋃
{Ai : i ∈ j} where j ≥ 1 is a number

and each sets Ai is algebraic, irreducible, and not included in the union of
the others;

3. [9, Claim 4.9] if A,B ⊆ Rd are algebraic sets and A is irreducible, then
either A ⊆ B or A ∩ B is nowhere dense in the set of nonsingular points
of A.

Coming to the original contents of this paper, the following concept is key.

Definition 2.3. Let n ≥ 1 be a number, x ∈ Rd, and F ⊆ R.

1. A set A ⊂ Rd is F -semialgebraic if it is of the form {z ∈ Rd : R |= ψ(z)}
where ψ is a a formula of the language of real closed fields with parameters
in F ;

2. D(F, x) is the smallest set among the collection of F -semialgebraic sets
containing x which happen to be R-algebraic.

Example 2.4. Let d = 1, F = Q, and x =
√

2. Then D(F, x) = {
√

2}, even
though the smallest zero set of a polynomial with rational coefficients containing
x is {−

√
2,
√

2}.

If the set F ⊂ R is a real closed subfield, then the set D(F, x) is simply the
smallest subset of Rd which is a zero-set of a polynomial with coefficients in F
and contains x. This follows from F being an elementary submodel of R. How-
ever, we will use the sets D(F, x) also when F is a real closed subfield of R with
finitely many additional elements, and that is where its exact definition will pay
off. The following three propositions provide the most important information
about the sets D(F, x).

Proposition 2.5. Let F ⊂ R be a set and x ∈ Rd be a point. Then

1. D(F, x) is an irreducible algebraic set;

2. x is a nonsingular element of D(F, x).

3



3. if F ⊂ R is a real closed subfield, then D(F, x) = {x} if and only if x ∈ F d.

Proof. (1) follows from the fact that the components of an algebraic set are
definable from the algebraic set. To fill in the details, let A ⊂ Rd be an algebraic
set. Let pi for i ∈ j be polynomials with real coefficients whose zero sets are
the components of the set A. Using dummy zero coefficients if necessary, we
may assume that there is a number m such that the sequence of coefficients of
pi is an element of Rm for every i ∈ j. For each i ∈ j let Oi ⊂ Rm be a basic
open set containing the tuple of coefficients of pi, so that the sets Oi for i ∈ j
are pairwise disjoint. Now, the zero set of (say) the polynomial p0 is defined
as the set of all x ∈ A such that there is a sequence 〈qi : i ∈ j〉 of polynomials
whose coefficients come from the set Oi respectively, each of whose zero sets is a
proper subset of A, and such that q0(x) = 0. This follows from the uniqueness
of components of algebraic sets.

(2) follows from the fact that the set of singular points of an irreducible
algebraic set A is an algebraic, proper subset of it definable from A. The
algebraicity and proper inclusion is proved in [1, Proposition 3.3.14]. For the
definability, it is enough to restate the definitions. Namely, for every polynomial
p such that A = {y ∈ Rd : p(y) = 0}, the Zariski tangent space to A at y is
the set of all vectors perpendicular to the vector of partial derivatives of p at
y. The tangent space does not depend on the choice of p. The point y is then
nonsingular in A if this space has maximal dimension possible, namely dim(A).
This can be mechanically restated by a rather long formula in the language of
real closed fields.

(3) follows from the fact that a real closed subfield is an elementary submodel
of R. If D(F, x) = {x} then each coordinate of x is definable from parameters
in F and therefore an element of F .

Proposition 2.6. Let F0, F1 be real closed subfields of R and let n ∈ ω. For
every finite set a ⊂ R there is a finite set b ⊂ F1 such that for every x ∈ F d1 ,
D(F0 ∪ b, x) ⊆ D(F0 ∪ a, x).

Proof. Let v ∈ Rm be a tuple enumerating all elements of a. For each x ∈ F d1 ,
let px be a polynomial with n + m free variables and coefficients in the field
F0 such that px(x, v) = 0 and the set Ax = {u ∈ Rd : px(u, v) = 0} is as
small as possible. Such a polynomial exists by the Hilbert basis theorem. Let
Bx = {w ∈ Rm : px(x,w) = 0}; this is an algebraic set containing v as an
element. Let C =

⋂
{Bx : x ∈ F d1 }; this is an algebraic set containing v as an

element. Let c ⊂ F d1 be a finite set such that C =
⋂
{Bx : x ∈ c}. Let b ⊂ F1

be a finite set such that all coordinates of points in c can be found in the set b.
I claim that the set b works.

To show this, suppose that x ∈ F d1 is an arbitrary point, and work to show
that D(F0∪b, x) ⊆ D(F0∪a, x) holds. Use quantifier elimination for real closed
fields to define the set D(F0∪a, x) by a quantifier-free formula with parameters
in F0 ∪ a. There is a finite list of polynomials qi : i ∈ j, each having parameters
in F0 and d+m free variables such that the quantifier-free formula is a Boolean
combination of formulas of the form qi(u, v) ≥ 0. Let d = {i ∈ j : qi(x, v) = 0},
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let Dx = {u ∈ Rd : qi(u, v) = 0 for all i ∈ d}, and let O ⊂ Rn be a basic open
neighborhood of x in which the polynomials qi(u, v) for i ∈ j \ d do not change
sign. Clearly, Ax ⊆ Dx holds by the minimal choice of the polynomial px, and
Dx ∩O ⊂ D(F0 ∪ a, x) holds by definitions.

Consider the set Ex = {u ∈ Rd : ∀w ∈ C px(u,w) = 0}. This is an algebraic
set as well as a F0 ∪ b-semi-algebraic set containing x as an element. By its
definition, Ex ⊆ Ax holds. Thus, Ex ∩ O ⊂ D(F0 ∪ a, x) must hold as well.
Finally, since D(F0 ∪ b, x) ⊆ Ex holds by the definition of D(F0 ∪ b, x), it must
be the case that D(F0 ∪ b, x) ∩O ⊆ D(F0 ∪ a, x).

Now, consider the disjunction in Fact 2.2(3) applied to A = D(F0∪ b, x) and
B = D(F0 ∪ a, x). It is impossible for the set A∩B to be nowhere dense in the
set of nonsingular points of A, because x ∈ O is a nonsingular point of A by
Proposition 2.5 and B contains the whole neighborhood A∩O of x in A. Thus,
it must be the case that A ⊆ B holds as desired.

The final proposition of this section provides the key connection between real
algebraic geometry and forcing.

Proposition 2.7. Let V [G0], V [G1] be mutually generic extensions and n ≥ 1
be a number. Let a ⊂ R be a finite set in the model V [G1]. Then for every
x ∈ Rd ∩ V [G1], D((R ∩ V ) ∪ a, x) = D((R ∩ V [G0]) ∪ a, x).

Proof. Let v ∈ Rm be a finite sequence enumerating all elements of a. It follows
directly from the definitions that D((R∩V )∪a, x) is just the v-th section of the
set D(R ∩ V, vax), and similarly for D((R ∩ V [G0]) ∪ a, x). However, the sets
D(R∩V, vax) and D(R∩V [G0], vax) are equal by [?, Corollary 2.7] applied to
the Noetherian topology of algebraic sets.

3 The coloring poset

The model for Theorem 1.1 is obtained as a generic extension of the choiceless
Solovay model [3, Theorem 26.14] via a definable σ-closed coloring poset. The
coloring poset can be stated for a more general class of hypergraphs of arity
three.

Definition 3.1. A hypergraph Γ on a Polish space X of arity n is 2-irreflexive
if in the closure of Γ in the space [X]≤n with the Vietoris topology there are no
sets of cardinality two.

An example of a hypergraph which is 2-irreflexive is the hypergraph of equilat-
eral triangles on Rd if d ≥ 2 is a number. An example of a hypergraph of arity
three which is not 2-irreflexive is the hypergraph of isosceles triangles on Rd.
2-irreflexive hypergraphs carry the following parameter:

Definition 3.2. Let X be a Euclidean space and Γ be a 2-irreflexive algebraic
hypergraph on X. Let A ⊂ R be a set and x ∈ X be a point. ε(A, x) is the
largest number ε > 0 such that there is no set b ⊂ X consisting only of points
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closer than ε to x such that for every y ∈ D(A, x) which is not equal to x or
to any element of b b ∪ {y} ∈ Γ holds. If no such number ε exists, we put
ε(A, x) = 0; if there are arbitrarily large such numbers ε, put ε(A, x) =∞.

Proposition 3.3. Let Γ be an algebraic, 2-irreflexive hypergraph of arity three
on a Euclidean space X of dimension d ≥ 1.

1. if A ⊂ R then ε(A, x) = 0 if and only if x is algebraic over A;

2. if A ⊂ B ⊂ R then ε(B, x) ≤ ε(A, x);

3. if F ⊂ R is a real closed subfield and x /∈ F d is a point, then there is no set
b ⊂ F d consisting of points closer than ε(F, x) to x such that b∪ {x} ∈ Γ.

Proof. For (1), recall that x is algebraic over A if and only if D(A, x) 6= {x} by
Proposition 2.5(3). Now, if D(A, x) = {x} then ε(A, x) = 0 by the definitions. If
D(A, x) 6= {x} then pick a point y ∈ D(A, x) distinct from x. If for every ε > 0
there is a set bε consisting of points closer to x than ε such that bε ∪ {y} ∈ Γ,
then {x, y} belongs to the closure of Γ in the space X≤3, contradicting the
assumption of 2-irreflexivity on Γ. Thus, ε(A, x) > 0 holds as desired.

(2) follows directly from the definitions, noting that D(B, x) ⊆ D(A, x). For
(3), suppose towards a contradiction that b ⊂ F d is a set consisting of points
closer than ε(F, x) to x such that b∪{x} ∈ Γ. Let B = {y ∈ X : b∪{y} ∈ Γ}∪b.
This is an F -algebraic set containing x, and therefore D(F, x) ⊆ B holds. It
follows that for every point y ∈ D(F, x) \ (b ∪ {x}), b ∪ {y} ∈ Γ holds, and by
the definitions, the set b cannot consist of points which are closer than ε(F, x)
to x.

For the rest of the section, fix a number d ≥ 1 and an algebraic hypergraph
Γ of arity three on Rd which is 2-irreflexive. I will produce a balanced coloring
poset for Γ. It will be useful to fix some initial data. The set of colors is the set
of metric open balls in Rd which have a rational center and a rational radius.
By a (partial) coloring I mean a (partial) map f from Rd to the set of colors
such that for each x ∈ dom(f), x ∈ f(x) holds. Let I be the ideal on the set
Q+ which consists of those sets whose only accumulation point is zero.

Definition 3.4. The coloring poset P consists of all countable partial colorings
p such that for some countable real closed subfield supp(p) ⊂ R it is the case
that dom(p) = supp(p)n. The ordering is given by q ≤ p if

1. p ⊆ q;

2. for every point x ∈ dom(q)\dom(p), the metric diameter of q(x) is smaller
than ε(supp(p), x);

3. for every finite set a ⊂ supp(q), writing C(p, q, a) = {x ∈ dom(q \
p) : ε(supp(p) ∪ a, x) ≤ diam(q(x)} and q∗A = {diam(q(x)) : x ∈ A}, then
q∗C(p, q, a) ∈ I holds.
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The properties of P must be checked in turn.

Proposition 3.5. ≤ is a transitive relation.

Proof. Let r ≤ q ≤ p be conditions in the coloring poset P ; I must show that
r ≤ p holds. For Definition 3.4(1), since p ⊆ q and q ⊆ r holds, p ⊆ r certainly
follows. For Definition 3.4(2), suppose that x ∈ dom(r) \ dom(p) is a point. If
x ∈ dom(q), then Definition 3.4(2) applied to q ≤ p implies that the diameter
of r(x) = q(x) is smaller than ε(supp(p), x). If x ∈ dom(r) \ dom(q), then
Definition 3.4(2) applied to r ≤ q implies that diam(r(x)) < ε(supp(q), x) ≤
ε(supp(p), x) where the second inequality follows from Proposition 3.3(2).

The key point is the verification of Definition 3.4(3). Suppose that a ⊂
supp(r) is a finite set. By Proposition 2.6, find a finite set b ⊂ supp(q) such
that for every point x ∈ dom(q), D(supp(p) ∪ b, x) ⊆ D(supp(p) ∪ a, x). It
is then clear that the set C(p, r, a) is a subset of C(p, q, b) ∪ C(q, r, a). Now,
q∗C(p, q, b) ∈ I and r∗C(q, r, a) ∈ I holds by Definition 3.4(3) applied to q ≤ p
and to r ≤ q, Thus, r∗C(p, r, a) ∈ I and the proof is complete.

Proposition 3.6. For every condition p ∈ P and every point x ∈ Rd there is a
condition q ≤ p such that x ∈ dom(q).

Proof. Fix p ∈ P and x ∈ Rd. Let G ⊂ R be any countable real closed subfield
of R containing supp(p) as a subset and coordinates of the point x as elements.
Choose an infinite set b of positive rationals converging to zero. Let q be a
function with domain Gd which extends p such that for every y ∈ Gd \ dom(p)
q(y) is a basic open neighborhood of y of diameter which is in the set b and
smaller than ε(supp(p), y) and such that q � Gd \ dom(p) is an injection. It will
be enough to show that q ∈ P is a condition stronger than p.

To show that q is a coloring, suppose that e is a hyperedge in dom(q),
and work to show that e is not monochromatic. If all its vertices belong to
p, then this follows from p being a coloring. If more than one of its vertices
belongs to dom(q \ p) then this follows from q being an injection on this set.
Finally, in the event that e has exactly one vertex y in the set dom(q \ p), apply
Proposition 3.3(3) to show that e is not monochromatic in this case either.

Now, to show that q ≤ p, it is clear that p ⊆ q holds. For every point
y ∈ dom(q \ p), the value q(y) is a basic open neighborhood whose diameter is
smaller than ε(supp(y), y). This verifies Definition 3.4(2) for p and q. Finally,
the set q∗dom(q \p) (not just q∗C(p, q, a)) for any finite set a ⊂ supp(q) belongs
to the ideal I, because it is a subset of b. This verifies Definition 3.4(3) for p
and q and completes the proof.

Proposition 3.7. ≤ is σ-closed.

Proof. If 〈pi : i ∈ ω〉 is a descending sequence of conditions then p =
⋃
i pi is

their common lower bound. To see this, first note that supp(p) =
⋃
i supp(pi)

is a real closed subfield of R, dom(p) = supp(p)d, and p is a function and a
coloring, therefore a condition in the poset P . Now, fix i ∈ ω and work to show
that p ≤ pi holds. Items (1) and (2) of Definition 3.4 are immediate. For item
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(3), if a ⊂ supp(p) is a finite set, then there is j ≥ i such that a ⊂ supp(pj),
and then C(pi, p, a) = C(pi, pj , a) and (3) follows from the same item of the
definition applied to pj ≤ pi.

Finally, we come to the balance properties of P . The moral of the following
propositions is that suitable total Γ-colorings exist, they serve as balanced con-
ditions in the poset P , and suitable strengthenings of balance actually occur.
For the sake of brevity, the propositions are proved under the assumption of the
Continuum Hypothesis (CH); this does not cause any injury to the consistency
result I am aiming at. A significantly longer argument proves Proposition 3.8
and then the others in ZFC.

Proposition 3.8. (CH) For every condition p ∈ P there is a total Γ-coloring
p̄ such that Coll(ω,R)  p̄ ≤ p.

Note that the total coloring p̄ becomes a condition in P in the Coll(ω,R)-
extension. The proposition says in particular that every countable partial col-
oring can be extended to a total one; however, it says more than that in view
of Definition 3.4(3).

Proof. Use the Continuum Hypothesis assumption to find an enumeration 〈rα : α ∈
ω1〉 of all reals. By transfinite recursion on the countable ordinal α build con-
ditions pα ∈ P so that p0 = p, α ∈ β implies pβ ≤ pα, and rα ∈ supp(pα+1).
This is easy to do using Proposition 3.6 in successor stages, and Proposition 3.7
in limit stages. Finally, let p̄ =

⋃
α pα. This is a total Γ-coloring. The proof

of Proposition 3.7 in the Coll(ω,R)-extension shows that Coll(ω,R)  p̄ is a
common lower bound of all pα for α ∈ ωV1 as desired.

Proposition 3.9. Let p̄ ∈ V be a total coloring. Let V [Gi] for i ∈ k be triple-
wise mutually generic extensions. For each i ∈ k let pi ≤ p̄ be conditions in
the model V [Gi]. Then pi for i ∈ k have a common lower bound in the coloring
poset P .

It is necessary to parse the proposition correctly. The whole proposition (and
its proof as well) takes place in an ambient forcing extension, whose choice is
inconsequential, and it is therefore not specified. The assumption on the generic
extensions says that any pair or any triple of them is mutually generic. In fact,
the proof shows immediately that it is enough to assume that pairs and triples of
them are n-Noetherian as in [9]–this is irrelevant for the purposes of this paper
though. The coloring poset P is re-interpreted in every model in question. The
coloring p is total in V , therefore uncountable in V . However, if a generic
extension collapses the cardinality of R∩ V to ℵ0, p becomes a condition in the
poset P as interpreted in that generic extension.

Proof. The first observation must be the following:

Claim 3.10.
⋃
i pi is a function and a coloring.
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Proof. Let i, j ∈ k be distinct indices. Since the generic extensions V [Gi]
and V [Gj ] are mutually generic, V [Gi] ∩ V [Gj ] = V holds. Thus, dom(pi) ∩
dom(pj) ⊂ V . However, pi � V = pj � V = p holds, so it must be the case
that

⋃
i∈k pi. is a function. To see that it is a coloring, let e = {x0, x1, x2} is

a hyperedge in dom(
⋃
i pi). The proof that it is not monochromatic considers

several configurations:
Case 1. All three vertices are in the same extension V [Gi]. In this case, the
hyperedge e is not monochromatic because pi is a coloring.
Case 2. Not Case 1 and all three vertices can be found in the union of two of
the forcing extensions. Then, there must be a single vertex, say x1 which is in
V [Gi] \V , and the two remaining vertices are in V [Gj ] for some distinct indices
i, j ∈ k. Let D = {y ∈ Rn : {x0, x2, y} ∈ Γ}. This is a V [Gj ]-algebraic set
containing x1. By the mutual genericity assumption on V [Gi] and V [Gj ] and
Proposition 2.7, D(R ∩ V, x1) ⊆ D holds; in other words, for every point y ∈
D(R∩V, x1)\{x0, x1, x2}, {x0, x2, y} ∈ Γ holds. By Definition 3.2, at least one of
the points x0, x2 must be farther than ε(R∩V, x1) from x1. By Definition 3.4(2)
applied to p1 ≤ p, {x0, x2} 6⊂ p1(x1) and e is not monochromatic.
Case 3. Not Case 1 and 2. This is handled in the same way as Case 2, except
this time mutual genericity in triples is used. This proves the claim.

It is important to understand that the work does not end here. While the
function

⋃
i∈k pi is a coloring, its domain is not in the required form for a

condition in the coloring poset; it is necessary to extend its domain. Towards
this end, I need to analyze the situation closer.

Claim 3.11. For every point x ∈ Rd\
⋃
i dom(pi) and all distinct indices i, j ∈ k

there is a set bij(x) ∈ I such that whenever y ∈ dom(pi \ p) and z ∈ dom(pj \ p)
such that {x, y, z} ∈ Γ, then either {x, z} 6⊂ pi(y) or the diameter of pi(y)
belongs to the set bij(x).

Proof. Fix the point x and distinct indices i, j ∈ k. Let c be the set of all pairs
〈y, z〉 such that y ∈ dom(pi \ p) such that there is a point z ∈ dom(pj \ p) such
that {x, y, z} ∈ Γ and pi(y) contains both x and z.

For each pair 〈y, z〉 ∈ c let Ay,z = {w ∈ Rd : {y, z, w} ∈ Γ} ∪ {y, z}. This
is an algebraic set. By the Hilbert basis theorem, there is a finite set c′ ⊂ c
such that the intersections

⋂
{Ay,z : 〈y, z〉 ∈ C} and

⋂
{Ay,z : 〈y, z〉 ∈ c′} are

equal; call their common value A. Let ai ⊂ supp(pi) be a finite set such that
for every point 〈y, z〉 ∈ C ′, all coordinates of the point y are in the set ai; the
set aj is defined similarly. Let bij be the set of all diameters of values pi(y) such
that y ∈ dom(pi \ p) is a point such that ε(supp(pi) ∪ ai, y) is smaller than the
diameter of pi(y). By Definition 3.4(3), this is a set in the ideal I. It will be
enough to show that the set bij works.

To see this, for every pair 〈y, z〉 ∈ C, the set Dy,z = {w ∈ Rn : ∀v ∈
C {w, v, z} ∈ Γ} is an algebraic set which is defined as a semi-algebraic set in
parameters in ai ∪ aj ∪ z. By Proposition 2.7, D(supp(p) ∪ ai, y) ⊆ Dy,z. It
follows that either the diameter of pi(y) is smaller than ε(supp(pi ∪ ai, y), in
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which case {x, z} 6⊆ pi(y), or else the diameter of the value pi(y) belongs to the
set bij by the choice of bij .

Now, let F be any countable real closed subfield of R such that
⋃
i∈k supp(pi) ⊂

F . Let G = F d\
⋃
i∈k dom(pi). Let b ⊂ Q+ be an infinite sequence converging to

zero which has finite intersection with every set bij(x) for distinct indices i, j ∈ k
and points x ∈ G. It is not difficult to find a map q on F d extending

⋃
i∈k pi,

such that q � G is an injection and such that for every x ∈ Fn \
⋃
i∈k dom(pi),

and all indices i, j ∈ k, diam(q(x)) < ε(supp(pi), x) and diam(q(x)) ∈ b \ bij
both hold. This is easy to do as the set G countable, and for each point x ∈ G
the last two demands still leave infinitely many options for the value q(x). It will
be enough to show that q is the desired common lower bound of the conditions
pi for i ∈ k.

First of all, q is a function and
⋃
i pi ⊂ q by the definitions. To see that q is

a coloring, let e = {x0, x1, x2} be a Γ-hyperedge in dom(q); I must show that it
is not monochromatic. There are several possible configurations.
Case 1. e ⊂ dom(

⋃
i pi). This configuration is resolved in Claim 3.10.

Case 2. If e contains exactly two vertices in dom(
⋃
i pi) and there is i ∈ k such

that these two vertices, say x1, x2 , both belong to dom(pi). Then the hyperedge
is not monochromatic by Proposition 3.3(3) and diam(q(x)) < ε(supp(pi), x).
Case 3. If e contains exactly two vertices in dom(

⋃
i pi) and there are distinct

indices i, j ∈ k such that (say) x1 ∈ dom(pi \ p̄) and x2 ∈ dom(pj \p) then either
{x0, x2} 6⊂ pi(x1) or pi(x1) has diameter in bij while q(x0) does not, by the
choice of the set bij(x). This means that the hyperedge e is not monochromatic.
Case 4. If e contains two or three vertices in the set G then e is not monochro-
matic since the function q � G is an injection.

Finally, I have to show that for all i ∈ k, q ≤ pi holds. This is in fact another
small ordeal. Fix i ∈ k; I must verify items (2) and (3) of Definition 3.4. Start
with item (2). Let x ∈ F d be a point not in dom(pi). There are two cases.
Case 1. There is j 6= i such that x ∈ dom(pj). In this case, use Proposition 2.7
and the mutual genericity assumption to see that D(R∩ V, x) = D(supp(pi), x)
and then apply item (2) of Definition 3.4 of pj ≤ p̄ to see that q(x) = pj(x) has
diameter smaller than ε(supp(pi), x).
Case 2. x /∈

⋃
j dom(pj); in this case, diam(q(x)) < ε(supp(pi), x) by the choice

of the function q.
Now, to verify item (3), let a ⊂ R be an arbitrary finite set. For every

index j 6= i, use Proposition 2.6 to find a finite set bj ⊂ supp(pj) such that
for every point x ∈ dom(pj), D((supp(pi) ∪ bj , x) ⊆ D(supp(pi) ∪ a, x). Use
Proposition 2.7 and the mutual genericity assumption to conclude that for ev-
ery point x ∈ dom(pj), D(R ∩ V ) ∪ bj , x) ⊆ D(supp(pi) ∪ a, x). Conclude
that C(pi, pj , a) ∩ dom(pj) ⊆ C(p̄, pj , bj). Now, it is clear that C(pi, q, a) ⊆
G ∪

⋃
j 6=i C(pi, q, a) ∩ dom(pj) ⊆ G ∪

⋃
j 6=i C(p̄, pj , bj). It follows that the set

q∗C(pi, q, a) belongs to the ideal I: q∗G ∈ I holds by the construction of the
map q, and for every j ∈ i q∗C(pi, q, a) ∩ dom(pj) ⊆ q∗C(p̄, pj , bj) ∈ I by
Definition 3.4(3) applied to pj ≤ p̄. The proof is complete.

10



Corollary 3.12. (CH) The poset P is balanced and even (4, 3)-balanced.

Proof. Let p ∈ P be any condition. Proposition 3.8 provides a total coloring p̄
such that Coll(ω,R)  p̄ ≤ p. Proposition 3.9 then shows that 〈Coll(ω,R), p̄〉
is a (4,3)-balanced pair below p as required by the definition of balance in [4,
Definition 13.1.1].

In the very special case of the hypergraph of equilateral triangles, I get the
following instrumental strengthening of balance to amalgamation diagrams with
multiple generic extensions.

Proposition 3.13. Let d ≥ 2 be a number and let Γ be the hypergraph of
equilateral triangles on Rd. Let j ∈ ω, and let 〈V [Gi] : i ∈ j〉 be a j-tuple of
generic extensions such that

1. for distinct i0, i1 ∈ j, V [Gi0 ] and V [Gi1 ] are mutually generic;

2. for pairwise distinct i0, i1, i2 ∈ j, V [Gi0 , Gi1 ]∩V [Gi1 , Gi2 ]∩V [Gi0 , Gi2 ] =
V .

Assume that p̄ ∈ V is a total coloring, and for each i ∈ j, pi ≤ p̄ is a condition
in P as interpreted in the model V [Gi]. Then the conditions {pi : i ∈ j} have a
common lower bound in P .

Note that mutually generic triples of generic extensions satisfy item (2) by the
product forcing theorem, so the amalgamation assumptions here are weaker
than in the case of Proposition 3.9. The weakening will be a critical ingredient
in the proof of Theorem 1.1 below.

Proof. The proof is literally identical to the proof of Proposition 3.9 except for
the configuration in Case 3 of the proof of Claim 3.10. To argue for that in the
special case of equilateral triangles from the weaker assumptions on the tuple
of generic extensions, proceed as follows.

Suppose that {x0, x1, x2} is an equilateral triangle in the domain of
⋃
i∈k pi

and there are pairwise distinct numbers i0, i1, i2 ∈ j such that xk ∈ dom(pij \p)
for all j ∈ 3; re-numbering if necessary, we may assume that ij = j for all
j ∈ 3. Let δ > 0 be the common length of the edges of the equilateral triangle
{x0, x1, x2}. Since δ ∈ V [G0, G1]∩V [G1, G2]∩V [G0, G2], the amalgamation as-
sumption (2) implies that δ ∈ V holds. Now, the pairwise genericity assumption
(1) and Proposition 2.7 show that D(V ∩ R, x1) is a subset of both spheres of
radius δ centered at x0 and x1. It follows that for every point y ∈ D(V ∩R, x1),
{x0, y, x1} ∈ Γ holds. Now, Definition 3.4(2) applied to p1 ≤ p shows that the
diameter of p1(x) is smaller than ε(V ∩ R, x1). The definition of ε(V ∩ R, x1)
implies that {x0, x2} 6⊂ p1(x1); therefore, the triangle {x0, x1, x2} cannot be
monochromatic.
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4 The independence result

The proof of Theorem 1.1 relies on the methodology of geometric set theory.
The key observation regarding isosceles triangles is the following.

Proposition 4.1. Let {x0, x1, x2} be an isosceles triangle in R2 Cohen-generic
over the ground model in V . Then

1. each point xi for i ∈ 3 is a Cohen-generic point of R2;

2. the models V [x0], V [x1], V [x2] are pairwise mutually generic;

3. the intersection of the three models V [x0, x1], V [x0, x2], and V [x1, x2] is
equal to V .

To parse the proposition correctly, consider the set C ⊂ (R2)3 consisting of
isoceles triangles in R2. This is a Gδ-set, therefore Polish in the inherited topol-
ogy. One can consider the Cohen poset of nonempty open subsets of C ordered
by inclusion; it adds a generic element of C. The triangle of Proposition 4.1 is
generic for this Cohen poset.

Proof. The proof is a rather mechanical application of the calculus of generic
points of semi-algebraic sets. For completeness, I recall the basic tenets of this
calculus. If X is a Polish space, a Cohen-generic element of X over a transitive
model V of ZFC is a point x ∈ X which belongs to all dense open subsets of X
coded in V . It is obtained by forcing with the Cohen poset PX of all nonempty
open subsets of X ordered by inclusion; its name for the generic point of X will
be denoted by ẋ. The following is proved by an immediate density argument.

Claim 4.2. Let X,Y be Polish spaces.

1. If f : X → Y is a continuous open function then PX forces the f -image of
the generic point ẋ to be PY -generic over V ;

2. PX×Y forces the points of generic pair 〈ẋ, ẏ〉 to be mutually generic over
V for the PX and PY poset respectively.

If m ≥ 1 is a number, then every semi-algebraic set C ⊂ Rm is a Boolean
combination of closed sets by the quantifier elemination theorem, therefore it is
Gδ in Rm and Polish in the inherited topology. In this sense I speak of Cohen-
generic elements of C. The poset PC is realized as the poset of all basic open
sets O ⊂ Rm with nonempty intersection with C, ordered by inclusion.

Let C ⊂ (R2)3 be the semi-algebraic set of all triples 〈u0, u1, u2〉 consisting
of pairwise distinct points such that the Euclidean distance from u0 to u1 or u2
is the same. Denote the PC-names for points in the generic triple by ẋ0, ẋ1, ẋ2.

Claim 4.3. PC  〈ẋ0, ẋ1〉 is a Cohen generic point of R2 × R2. The same is
true for any other pair of vertices of the generic triple.
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Proof. The projection from C to any pair of coordinates is easily checked to be
an open continuous map from C toR2×R2. Claim 4.2 completes the proof.

The following computation is a little more involved. The proof is a great example
of a powerful method I call the duplication technique.

Claim 4.4. PC forces V [ẋ0, ẋ1] ∩ V [ẋ1, x2] = V [ẋ1].

Proof. Let D ⊂ (R2)4 be the semi-algebraic set of all quadruples 〈u0, u00, u1, u2〉
consisting of pairwise distinct points such that 〈u0, u1, u2〉 ∈ C and 〈u00, u1, u2〉 ∈
C}. It is easily checked that the two projections to the coordinates indexed by
0, 1, 2 and to the coordinates indexed by 00, 1, 2 are both continuous open maps
from D to C, and the projection to the coordinates indexed by 0, 00, 1 is a con-
tinuous open function from D to (R2)3. Denote the PD-names for the points
in the generic quadruple by ẋ0, ẋ00, ẋ1, ẋ2. Claim 4.2 then immediately shows
that PD forces the following:

• 〈ẋ0, ẋ1, ẋ2〉 is a Cohen-generic point of C;

• 〈ẋ00, ẋ1, ẋ2〉 is a Cohen-generic point of C;

• 〈ẋ0, ẋ00, ẋ1〉 is a Cohen-generic point of (R2)3.

To prove the claim, suppose that O0 ×O1 ×O2 is a condition in the poset PC ,
and τ01, τ02 are two PR2×R2-names for sets of ordinals such that O0 × O1 × O2

forces that τ01/ẋ0, ẋ1 = τ12/ẋ1, ẋ2. I must find a stronger condition which
forces the common value to belong to the model V [ẋ2]. To this end, consider
the condition p = O0 × O0 × O1 × O2 in PD. The first two items above imply
that this condition forces τ01/ẋ0, ẋ1 and τ01/ẋ00, ẋ1 to be both equal to the
value τ12/ẋ1, ẋ2; in particular, they are forced to be equal. Their common value
belongs to the intersection V [ẋ0, ẋ1]∩ V [ẋ′0, ẋ1]. However, the third item above
shows that these two models are mutually generic extensions of V [ẋ1]; so, the
common value must belong to the model V [ẋ1] by the product forcing theorem.
It follows that some condition below O0×O1×O2 must force τ01/ẋ0, ẋ1 ∈ V [ẋ1]
as desired.

A symmetrical argument shows the following:

Claim 4.5. PC forces V [ẋ0, ẋ2] ∩ V [ẋ1, x2] = V [ẋ2].

Now, Claims 4.4 and 4.5 show that the intersection of the models V [ẋ0, ẋ1],
V [ẋ1, ẋ2] and V [ẋ0, ẋ2] is forced to be equal to the intersection of V [ẋ0] and
V [ẋ1]. Claim 4.3 shows that these two extensions are mutually generic exten-
sions of the ground model, showing that their intersection is V and completing
the proof of the proposition.

The rest of the proof of Theorem 1.1 is now routine and follows the lines of
previous arguments in [4]. Let d ≥ 2 be a number. Let κ be an inaccessible
cardinal. Let W be the choiceless Solovay model derived from the cardinal κ
[3, Theorem 26.14]; by this I mean the subclass of the Coll(ω,< κ)-extension of
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the ground model V consisting of sets hereditarily definable from elements of V
and infinite binary sequences in the extension. Let P be the coloring poset of
Definition 3.4 for the hypergraph of equilateral triangles on Rd. Let G ⊂ P be
a filter generic over the model W . It will be enough to show that in W [G], DC
holds, Γ has countable chromatic number, and every non-meager subset of R2

contains an isosceles triangle.
To argue for these points, first argue that P is σ-closed (Proposition 3.7),

σ-closed posets preserve DC; thus, as DC holds in W , it holds in W [G] as
well. Since P is σ-closed, the extension W [G] does not contain any new reals;
consequently,

⋃
G is a Γ-coloring by the density Proposition 3.6. Finally, we

must show that every non-meager subset of R2 contains an isosceles triangle.
To this end, return to W , let p ∈ P be a condition, and let τ be a name for a
non-meager subset of R2. Let z ∈ 2ω be a parameter such that τ is definable
from τ and an element of V . Let V [K] be a model intermediate between V and
W , containing z and p satisfying the Continuum Hypothesis, and obtained by
a poset of cardinality smaller than κ.

In the model V [K], find a total Γ-coloring p̄ such that p ⊂ p̄ and Coll(ω,R 
p̄ ≤ p (Proposition 3.8). Since τ is a P -name for a nonmeager set, back in W it is
true that p̄  τ contains a point Cohen-generic over V [K]. Let Q be the Cohen
poset on R2. By the forcing theorem applied in V [K] and standard homogeneity
facts about W , there must be a basic open subset O ⊂ R2, a cardinal λ ∈ κ,
and a Q× Coll(ω, λ)-name σ for a condition in P stronger than p̄ such that

O Q Coll(ω, λ)  Coll(ω,< κ)  σ P ẋ ∈ τ

where ẋ is the Q-name for the Cohen-generic point of R2 added by Q and τ is
replaced by its definition from the parameter z.

Let R be the poset for adding a Cohen-generic isosceles triangle in R2.
Back in the model W , pick a triple 〈xi : i ∈ 3〉 R-generic over V [K] and
meeting the condition O3 ∈ R. Proposition 4.1 applied in V [K] shows that
the models V [K][xi] for i ∈ 3 are pairwise mutually generic over V [K], and⋂
a∈[3]2 V [K][xi : i ∈ a] = V [K]. Pick filters Hi ⊂ Coll(ω, λ) for i ∈ 3 which are

mutually generic over V [K][xi : i ∈ 3].

Claim 4.6. The models V [K][xi][Hi] for i ∈ 3 are pairwise mutually generic
extensions of V [K]. In addition,

⋂
a∈[3]2 V [K][xi : i ∈ a][Hi : i ∈ a] = V [K].

Proof. The first sentence is immediate. For the second sentence, I will show
that V [K][x0, x1][H0] ∩ V [K][x0, x2][H0] ∩ V [K][x1, x2] = V [K]; the claim is
then obtained by repeating this argument three times.

Suppose that b is a set of ordinals in the intersection of the three models.
Since H0 is generic over V [K][x0, x1, x2] and b ∈ V [K][x1, x2] holds, a genericity
argument with H in the models V [K][x0, x1] and V [K][x0, x2] shows that b must
be in both of these models. It follows that b ∈

⋂
a∈[3]2 V [K][xi : i ∈ a] and

therefore in V [K] as desired.
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By the balance Proposition 3.13, the conditions σ/xi, Hi for i ∈ 3 have a com-
mon lower bound in the poset P . That lower bound forced the isosceles triangle
〈xi : i ∈ 3〉 to be a subset of τ . Thus completes the proof of Theorem 1.1.
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