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Observation
There’s only one notion of an eigenvalue of a matrix.

This is directly related to the fact that there is only one notion of
graph quasirandomness.
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Eigenvalues The Second Eigenvalue Other Notions

Compare what happens to matrices with what happens to tensors.
For our purposes, it will suffice to consider 3-hypermatrices—that
is, three dimensional arrays of numbers

T = [tijk ].

We usually define the eigenvalues of a matrix M to be the value λ
so there is a vector v such that Mv = λv . But this defintion
doesn’t have a clear analog for a tensor: if v is a vector, Tv is a
matrix, while if M is a matrix, T ·M is a vector.
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But there is an alternative definition of the eigenvalue of a matrix:
an eigenvalue is a local maximum of the inner product

λ = 〈Mv , v〉 =
∑
i ,j

mijvivj

among the unit vectors v .

This definition does make sense: we can define a vector eigenvalue
of T to be a local maximum of

λ =
∑
i ,j,k

tijkvivjvk

over unit vectors v .
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With symmetric matrices, the second eigenvalue measures
deviation from quasirandomness.

That is, suppose M is a large, square, symmetric, dense matrix:
M is an n × n matrix with n big,
mij = mji ,
the entries mij ∈ [0, 1],
the average value

∑
i ,j mij = pn2.
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Then the first eigenvalue measures the even distribution of M:

Lemma
λ1 ≥ np, and
λ1 = np if and only if, for each i ≤ n,

∑
j mij = np.

Hint: consider the unit vector constantly equal to 1/
√

n.

Suppose λ1 ≈ np. We can then look at λ2.

Suppose we generate M randomly: for each ij , we flip a fair coin
independently to decide whether mij is 0 or 1. Then, with high
probability, λ1 ≈ n

2 and λ2 is close to 0 (and therefore all other
eigenvalues are also close to 0).
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One way to see this: it is a standard fact about eigenvalues that∑
i
λ4

i = tr(M4)

=
∑
ijkl

mijmjkmklmli .

For most ijkl , these are four different pairs, so each quadruple has
a 1/24 chance of being present, so this sum is 1

24 n4. If we think of
M as the adjacency matrix of a graph, this amounts to counting
the number of cycles of length 4.

Since λ1 ≈ n
2 , there is no room left for the other eigenvalues:∑

1<i≤n λ
4
i must be small.
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Furthermore, this is, suitably interpreted, an equivalence:

Theorem
There is a language L for probabilistic matrices such that, for each
sentence σ and each p ∈ (0, 1), if σ is (with high probability) true
in the random matrix with density p then there is an ε so that σ
holds in any matrix with n large enough, λ1− np < ε, and |λ2| < ε.
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For tensors, this doesn’t work. λ1 still measures even distribution:
Lemma

λ1 ≥ n3/2p, and
λ1 = n3/2p if and only if, for each i ≤ n,

∑
j,k aijk = n2p

but consider the tensor generated as follows:
Generate a random matrix B = [bij ] by flipping a coin for each
pair i , j .
Set tijk = bij + bik + bjk mod 2.

Then T is evenly distributed and has a small λ2, but is very
different from a random tensor. For instance, in a random tensor
we would have

1
n4

∑
ijkl

rijk rijl rikl rjkl ≈ 1/24

while
1
n4

∑
ijkl

tijktijl tikl tjkl ≈ 1/23.



Eigenvalues The Second Eigenvalue Other Notions

For tensors, this doesn’t work. λ1 still measures even distribution:
Lemma

λ1 ≥ n3/2p, and
λ1 = n3/2p if and only if, for each i ≤ n,

∑
j,k aijk = n2p

but consider the tensor generated as follows:
Generate a random matrix B = [bij ] by flipping a coin for each
pair i , j .
Set tijk = bij + bik + bjk mod 2.

Then T is evenly distributed and has a small λ2, but is very
different from a random tensor.

For instance, in a random tensor
we would have

1
n4

∑
ijkl

rijk rijl rikl rjkl ≈ 1/24

while
1
n4

∑
ijkl

tijktijl tikl tjkl ≈ 1/23.



Eigenvalues The Second Eigenvalue Other Notions

For tensors, this doesn’t work. λ1 still measures even distribution:
Lemma

λ1 ≥ n3/2p, and
λ1 = n3/2p if and only if, for each i ≤ n,

∑
j,k aijk = n2p

but consider the tensor generated as follows:
Generate a random matrix B = [bij ] by flipping a coin for each
pair i , j .
Set tijk = bij + bik + bjk mod 2.

Then T is evenly distributed and has a small λ2, but is very
different from a random tensor. For instance, in a random tensor
we would have

1
n4

∑
ijkl

rijk rijl rikl rjkl ≈ 1/24

while
1
n4

∑
ijkl

tijktijl tikl tjkl ≈ 1/23.



Eigenvalues The Second Eigenvalue Other Notions

We could have defined a different kind of eigenvalue:

Definition
When T is a symmetric tensor, a matrix eigenvalue of T is a value
λ which is a local maximum of∑

i ,j,k
tijkmijmikmjk

among unit matrices M. We call such an M an eigenmatrix of T .
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The first eigenvalue measures a stronger kind of even distribution:

Lemma
λ1 ≥ n−3p,
λ1 = n−3p if and only if, for every i , j ,

∑
k aijk = np.

The second matrix eigenvalue does actually measure deviation
from quasirandomness.
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But there are other notions:
eigenvalues are local maxima of

∑
i ,j,k tijkmijvk among unit

matrices M and unit vectors v (this is the notion related to
Tao’s slice rank),

eigenvalues are local maxima of
∑

i ,j,k tijkmijmik among unit
matrices M
etc.
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Suppose we have a d-tensor. There is a notion of eigenvalue
corresponding to every antichain of proper subsets of {1, . . . , d},
identifying antichains under permutations of {1, . . . , d}.

So for 3-tensors, we have antichains like:
{{1}, {2}, {3}} corresponding to vector eigenvalues,
{{1, 2}, {1, 3}, {2, 3}} corresponding to matrix eigenvalues,
{{1, 2}, {3}},
{{1, 2}, {1, 3}},
etc.
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Question
How can we be sure we’ve found them all?

Notions of eigenvalues correspond to “canonical” sub-σ-algebras in
a certain setting, but it’s not clear how to pin down the notion of
canonical.

The end.
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