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Abstract

We isolate a new preservation class of Suslin forcings and prove sev-
eral associated consistency results in the choiceless theory ZF+DC. For
example, writing Γn for the hypergraph on P(ω) consisting of n-tuples
which modulo finite form a partition of ω, it is consistent with ZF+DC
that the chromatic number of Γ3 is countable, yet the chromatic number
of Γ4 is not.

1 Introduction

Following the initial work on geometric set theory [7], I isolate a new class of
balanced forcings, the transcendental balanced forcings, verify that a number
of partial orders belong to it, and show a number of preservation theorems for
the extension of the Solovay model by forcings in this class. In this way, I ob-
tain several independence results in the choiceless ZF+DC set theory regarding
chromatic numbers of certain Borel graphs and hypergraphs. Recall that a hy-
pergraph Γ of arity n on a set X is just a subset of [X]n, its elements are its
hyperedges. A (partial) function c on X is a Γ-coloring if c is not constant on
any Γ-hyperedge. The chromatic number of Γ is the smallest cardinal κ such
that there is a total Γ-coloring c : X → κ. In the absence of the axiom of choice,
we only discern between various finite values of the chromatic number and then
countable and uncountable chromatic number. The study of chromatic numbers
of Borel hypergraphs has long history [9, 6, 8, 1, 2]; in the choiceless ZF+DC
theory, inequalities between chromatic numbers of such hypergraphs are subject
to many consistency results [11, 7].

For a Polish group G one may consider hypergraphs on G associated with
various equations, and their chromatic numbers. Consider the hypergraph ∆(G)
of quadruples which solve the equation g0g

−1
1 g2g

−1
3 = 1. Note that in ZF, the

countable chromatic number of ∆(G) is inherited by subgroups of G. I prove

Theorem 1.1. Let G be a Kσ Polish group. It is consistent relative to an inac-
cessible cardinal that ZF+DC holds, the chromatic number of ∆(G) is countable,
yet the chromatic number of ∆(S∞) is uncountable.

∗2010 AMS subject classification 03E15, 03E25, 03E35.
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This consistency result depends on the fact that S∞ has (a small strengthening
of) the ample generics property. It seems to be difficult to separate chromatic
numbers of the hypergraphs ∆(G) for various other Polish groups, such as G =
S∞ and G =the unitary group.

For a natural number n ≥ 2 let Γn be the hypergraph on P(ω) of arity
n consisting of n-tuples of sets which modulo finite form a partition of ω. In
the presence of a nonprincipal ultrafilter on ω, the chromatic number of each
hypergraph Γn is two, as the membership in the ultrafilter constitutes a Γn-
coloring. Without an ultrafilter, I learned how to separate chromatic numbers
of Γn’s:

Theorem 1.2. It is consistent relative to an inaccessible cardinal that ZF+DC
holds, the chromatic number of Γ3 is countable, while the chromatic number of
Γ4 is uncountable.

Theorem 1.3. It is consistent relative to an inaccessible cardinal that ZF+DC
holds, the chromatic number of Γ4 is countable, while the chromatic number of
Γ5 is uncountable.

It appears more challenging to separate the chromatic numbers of Γn for higher
values of n, and I do not know how to do that.

For every number n ≥ 2 let Θn be the hypergraph of arity n on P(ω)
consisting of sets d of size n such that

⋂
d = 0 and

⋃
d = ω, both modulo finite.

A membership in a nonprincipal ultrafilter on ω provides a Θn coloring with
two colors. However, coloring Θn without an ultrafilter seems to be a great
challenge for larger values of n. Θ2 is locally countable and so can be colored
by rather innocuous posets of [7, Section 6.4]. I do not know how to obtain a
model where the chromatic number of Θ3 is countable without an ultrafilter.
For Θ4, I have a preservation theorem.

Theorem 1.4. Let κ be an inaccessible cardinal. In cofinally transcendentally
balanced forcing extensions of the symmetric Solovay model derived from κ, the
chromatic number of Θ4 is uncountable.

This rules out nonprincipal ultrafilters on ω in transcendentally balanced ex-
tensions. (Diffuse finitely additive probability measures on ω do not exist there
either for a different chromatic number reason.) The important point here is
that most known balanced Suslin posets which do not add an ultrafilter are
transcendentally balanced. This includes for example the posets adding a tran-
scendence basis for R over Q, the coloring posets in [7, Section 8.2], and also
the coloring posets introduced in the last section of the present paper. I do not
know how to find a model of ZF+DC in which the chromatic number of Θ4 is
neither equal to 2 nor uncountable.

In Section 2, I introduce transcendence of pairs of generic extensions, a
property weaker than mutual genericity, with several properties of mutually
transcendental pairs of generic extensions. In Section 3 I provide a number of
useful examples of mutually transcendental pairs. In Section 4, I define the
notion of transcendental balance for Suslin forcing, and examples of Section 4
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are used to prove a number of preservation theorems for generic extensions of
the Solovay model obtained with transcendentally balanced forcings. Finally,
in Section 5, I show that many known balanced forcings are transcendentally
balanced, and build a new supply of coloring posets which are transcendentally
balanced. These are in turn used to prove the theorems of this introduction.

Notation of the paper follows [3], and in matters of geometric set theory [7].
In particular, the calculus of virtual conditions in Suslin forcing of Section 4 is
established in [7, Chapter 5].

2 Transcendental pairs of extensions

The key concept in this paper is a certain perpendicularity notion for pairs of
generic extensions, which generalizes mutual genericity.

Definition 2.1. Let V [G0], V [G1] be two generic extensions in an ambient
generic extension. Say that V [G1] is transcendental over V [G0] if for every
ordinal α and every open set O ⊂ 2α in the model V [G1], if 2α ∩ V ⊂ O then
2α∩V [G0] ⊂ O. Say that the models V [G0], V [G1] are mutually transcendental
if each of them is transcendental over the other one.

Here, the space 2α is equipped with the usual compact product topology. For
a finite partial function h from α to 2 write [h] = {x ∈ 2α : h ⊂ x} The
open set O ⊂ 2α is then coded in V [G1] by a set H ∈ V [G1] of finite partial
functions from α to 2 with the understanding that O =

⋃
h∈H [h], and in this

way it is interpreted in V [G0][G1]. For the general theory of interpretations of
topological spaces in generic extensions (unnecessary for this paper) see [10]. It
is tempting to deal just with the Cantor space 2ω instead of its non-metrizable
generalizations, but the present definition has a number of small advantages
and essentially no disadvantages as compared to the Cantor space treatment.
On the other hand, extending the definition to all compact Hausdorff spaces is
equivalent to the present form.

I first need to show that the notion of transcendence generalizes mutual
genericity and in general behaves well with respect to product forcing. This is
the content of the following proposition.

Proposition 2.2. Let V [G0], V [G1] be generic extensions such that V [G1] is
transcendental over V [G0]. Let P0 ∈ V [G0] and P1 ∈ V [G1] be posets. Let
H0 ⊂ P0 and H1 ⊂ P1 be filters mutually generic over the model V [G0][G1].
Then V [G1][H1] is transcendental over V [G0][H0].

Proof. Work in the model V [G0, G1] and consider the product forcing P0 × P1.
Let α be an ordinal. Let 〈p0, p1〉 ∈ P0 × P1 be a condition, let τ ∈ V [G1] be
a P1-name for an open set such that p1  2α ∩ V ⊂ Ȯ, and let η ∈ V [G0] be
a P0-name for an element of 2α. We need to find a stronger condition in the
product which forces η ∈ τ .

First, work in the model V [G0]. Let A0 = {h : h is a finite partial function
from α to 2 and p0  ȟ 6⊂ η}. By a compactness argument, the set

⋃
h∈A0

[h]

3



must not cover the whole space 2α; if it did, a finite subset of Q0 would suffice to
cover 2α and there would be no space left for the point η. Let y ∈ 2α \

⋃
h∈A0

[h]
be an arbitrary point. Now work in the model V [G1] and let A1 = {h : h is
a finite partial function from α to 2 and there is a condition q ≤ p0 such that
q  [h] ⊂ τ}; since p0  2α∩V ⊂ τ , it must be the case that 2α∩V ⊂

⋃
h∈A1

[h].
Now, use the transcendence of V [G1] over V [G0] to argue that y ∈ Q. It

follows that there must be a finite partial function h ∈ A1 such that h ⊂ y. It
follows that there must be conditions p′0 ≤ p0 and p′1 ≤ p1 such that p′0  ȟ ⊂ η
and p′1  [h] ⊂ τ . Then the condition 〈p′0, p′1〉 forces in the product P0×P1 that
η ∈ τ as required.

Corollary 2.3. Mutually generic extensions are mutually transcendental.

Proof. Just let V [G0] = V [G1] = V in Proposition 2.2.

In the remainder of this section, I isolate several properties of mutually tran-
scendental extensions which will come handy later.

Proposition 2.4. Let V [G0], V [G1] be mutually transcendental generic exten-
sions of V . Then V [G0] ∩ V [G1] = V .

Proof. It will be enough to show that (2α ∩ V [G0]) ∩ (2α ∩ V [G1]) = 2α ∩ V
holds for every ordinal α. Let x ∈ 2α ∩ V [G0] \ V be an arbitrary point. The
open set O = 2α \ {x} in V [G0] covers 2α ∩ V . By the mutual transcendence,
2α ∩ V [G1] ⊂ O must hold as well. In particular, x /∈ V [G1] as required.

Proposition 2.5. Let V [G0], V [G1] be mutually transcendental generic exten-
sions of V . Let X0, X1 be Polish spaces and C ⊂ X0 × X1 be a Kσ-set. Let
x0 ∈ X0 ∩ V [G0] and x1 ∈ X1 ∩ V [G1] be points such that 〈x0, x1〉 ∈ C. Then
there is a point x′0 ∈ X0 ∩ V such that 〈x′0, x1〉 ∈ C.

Proof. Since C is a countable union of compact sets, there is a compact set
K ⊂ C coded in V such that 〈x0, x1〉 ∈ K. Let h : 2ω → X0 be a continuous
function onto the compact projection of the set K to X0. Let O ⊂ 2ω in V [G1]
be the open set of all points y ∈ 2ω such that 〈f(y), x1〉 /∈ K. The set O does
not cover 2ω ∩ V [G0] since h−1x0 ∩O = 0. By the mutual transcendence, there
must be a point y ∈ 2ω ∩ V \ O. Let x′0 = h(y) and observe that the point
x′0 ∈ X0 works as desired.

Corollary 2.6. Let X be a Kσ Polish field. Let p(v̄0, v̄1) be a multivariate
polynomial with coefficents in X and variables v̄0, v̄1. Let V [G0], V [G1] be mu-
tually transcendental generic extensions of V and let x̄0 ∈ V [G0], x̄1 ∈ V [G1] be
strings of elements of X such that p(x̄0, x̄1) = 0. Then there is a string x̄′0 ∈ V
arbitrarily close to x̄0 such that p(x̄′0, x̄1) = 0.

Proof. Apply the proposition with the additional insight that the spaces Xn for
any natural number n are Kσ and solutions to a given polynomial form a closed
set.
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Corollary 2.7. Let E be a Kσ-equivalence relation on a Polish space X. When-
ever V [G0], V [G1] are mutually transcendental generic extensions of V and
x0 ∈ X ∩ V [G0] and x1 ∈ X ∩ V [G1] are E-related points, then there is a
point x ∈ X ∩ V E-related to them both.

The last corollary can be generalized to some non-Kσ-equivalence relations as
in the following proposition.

Proposition 2.8. Let 〈Un, dn : n ∈ ω〉 be a sequence of sets and metrics on
each and let X =

∏
n Un. Let V [G0], V [G1] be mutually transcendental generic

extensions of V and x0 ∈ X ∩ V [G0] and x1 ∈ X ∩ V [G1] be points such
that limn dn(x0(n), x1(n)) = 0. Then there is a point x ∈ X ∩ V such that
limn dn(x(n), x0(n)) = 0.

Proof. First argue that for every number m ∈ ω there is a point y ∈ X ∩ V
such that ∀n dn(y(n), x1(n)) ≤ 2−m. To see this, fix a number k ∈ ω such that
for all n ≥ k, dn(x0(n), x1(n)) < 2−m−2. Let A = {{u, v} : ∃n ≥ k u, v ∈ Un
and dn(u, v) > 2−m}, and consider the space Z of all selectors on A, which is
naturally homeomorphic to 2A. In the model V [G0], let O = {z ∈ Z : ∃n ≥
k ∃v ∈ Un dn(x0(n), v) > 2−m and z(x0(n), v) = v}. This is an open subset of
the space Z. It does not cover Z ∩ V [G1] as in the model V [G1], one can find a
selector z ∈ Z such that for all n ≥ k and all {u, v} ∈ Z with u, v ∈ Un, z(u, v)
is one of the points u, v which is not dn-farther from x1(n) than the other. It is
immediate from the definition of the set O and a triangle inequality argument
that z /∈ O. By a mutual transcendence argument, there is a selector z′ ∈ Z ∩V
such that z′ /∈ O holds.

Work in V . For each number n ≥ k, let Bn = {u ∈ Un : ∀v ∈ Yn dn(u, v) >
2−m → z′(u, v) = u}. The set Bn contains x0(n) by the choice of the selector
z′. Moreover, for any two elements u, v ∈ Bn, dn(u, v) ≤ 2−m must hold: in
the opposite case, the selector z′ could not choose one element from the pair
{u, v} without contradicting the definition of the set Bn. Now consider any
point y ∈ X such that for all n < k, y(n) = x0(k) and for all n ≥ k y(n) ∈ Bn.
Then ∀n dn(y(n), x1(n)) ≤ 2−m as desired.

Now, let C = ω× (X ∩V ) and consider the set B ⊂ C of all pairs 〈m, y〉 ∈ A
such that lim supn dn(y(n), x1(n)) ≤ 2−m. As written, the set belongs to V [G1];
however, it also belongs to V [G0] since replacing x1 in its definition with x0

results in the same set by the initial assumptions on x0, x1. By Proposition 2.4,
B ∈ V holds. By the work in the previous paragraph, for each m ∈ ω B
contains some element whose first coordinate is m. Thus, in V there exists
a sequence 〈ym : m ∈ ω〉 such that ∀m 〈m, ym〉 ∈ B. By a Mostowski ab-
soluteness argument, there must be in V a point x such that for all m ∈ ω,
lim supn(ym(n), x(n)) ≤ 2−m, since such a point, namely x0, exists in V [G0].
A triangular inequality argument then shows that limn(x(n), x0(n)) = 0 as de-
sired.

I do not know whether further generalizations are possible. In particular, the
following is open:
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Question 2.9. Let E be a pinned Borel equivalence relation on a Polish space
X. Let V [G0], V [G1] be mutually transcendental generic extensions of V and
x0 ∈ X ∩ V [G0] and x1 ∈ X ∩ V [G1] are E-related points. Must there be a
point x ∈ X ∩ V E-related to them both?

3 Examples I

In this section, I provide several interesting pairs of mutually transcendental
pairs of generic extensions. To set up the notation, for a Polish space X, write
PX for the Cohen poset of nonempty open subsets of X ordered by inclusion,
with ẋgen being its name for a generic element of X. If f : X → Y is a con-
tinuous open map then PX forces f(ẋgen) ∈ Y to be a point generic for PY
[7, Proposition 3.1.1]. The first definition and proposition deal with Cohen
elements of Polish spaces.

Definition 3.1. Let X,Y0, Y1 be compact Polish spaces and f0 : X → Y0 and
f1 : X → Y1 be continuous open maps. Say that f1 is transcendental over f0

if for every nonempty open set O ⊂ X there is a point y0 ∈ Y0 such that the
set f ′′1 (f−1

0 {y0} ∩ O) ⊂ Y1 has nonempty interior for every nonempty open set
O ⊂ X.

Proposition 3.2. Suppose that X,Y0, Y1 are Polish spaces, X is compact, and
f0 : X → Y0 and f1 : X → Y1 are continuous open maps. The following are
equivalent:

1. f1 is transcendental over f0;

2. PX forces V [f1(ẋgen)] to be transcendental over V [f0(ẋgen)].

Proof. To show that (1) implies (2), let α be an ordinal, let η be a PY0-name for
an element of 2α, and let τ be a PY1

-name for an open subset of 2α which is forced
to contain V ∩2α as a subset. Let O ⊂ X be a nonempty open set. To prove (2),
I must find a strengthening O′ ⊂ O such that O′  η/f0(ẋgen) ∈ τ/f1(ẋgen).

To this end, let y0 ∈ Y0 be a point such that the set f ′′1 (f−1
0 {y0} ∩ O)

has nonempty interior, and let O1 ⊂ Y1 denote that interior. Use the initial
assumption on τ to find, for each z ∈ 2α, a condition O1z ⊂ O1 and a finite
partial map hz : α→ 2 such that hz ⊂ z and O1z  [hz] ⊂ τ . Use a compactness
argument to find a finite set a ⊂ 2α such that 2α =

⋃
z∈a[hz]. The set O0 =⋂

z∈a f
′′
0 (O ∩ f−1

1 O1z ⊂ Y0 is nonempty as it contains y0, and it is open as the
maps f0, f1 are continuous and open. Let O′0 ⊂ O0 be a condition which decides
the value η(β̌) for every ordinal β ∈

⋃
z∈a dom(hz). Since

⋃
z∈a[hz] = 0, there

must be a point z ∈ a such that O′0  ȟz ⊂ η. The set O′ = O∩f−1
0 O′0∩f−1O1z

is nonempty and open, and it forces in PX that η/f0(ẋgen) ∈ [hz] and [hz] ⊂
τ/f1(ẋgen).

The implication (2)→(1) is best proved by a contrapositive. Suppose that
(1) fails, as witnessed by some open set O ⊂ X. Let O′ ⊂ O be some nonempty
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open set whose closure is a subset of O, and let x ∈ O′ be a point PX -generic
over the ground model. Write y0 = f0(x) ∈ Y0 and y1 = f1(x) ∈ Y1. Let
C = f ′′0 (f−1

1 {y1} ∩ Ō′). This is a closed subset of Y0 coded in V [y1] which
contains the point y0. For the failure of (3), it is enough to show that C
contains no ground model point. Indeed, if y ∈ Y0 is a point in the ground
model, then D = f ′′1 (f−1

0 {y} ∩ Ō′) ⊂ Y1 is a closed subset of Y1 coded in the
ground model which has empty interior by the choice of the set O; in particular,
D ⊂ Y1 is nowhere dense, and since y1 ∈ Y1 is a Cohen generic point, y1 /∈ D
holds. Comparing the definitions of the sets C and D, it is obvious that y0 /∈ C
as required.

Example 3.3. Let b be a finite set and let b = a0 ∪ a1 be a partition into
two sets, each of cardinality at least two. Let X be the closed subset of P(ω)b

consisting of those functions x such that
⋂
i∈a x(i) = 0 and

⋃
i∈a x(i) = ω. Let

Y0 = P(ω)a0 and Y1 = P(ω)a1 . Let f0 : X → Y0 and f1 : X → Y1 be the
projection functions. Then f0, f1 are continuous, open, and transcendental over
each other.

Proof. The continuity and openness are left to the reader. To show that f1 is
transcendental over f0, let O ⊂ X be a nonempty relatively open set. Thinning
the set O down if necessary, one can find a natural number k ∈ ω and sets
ci ⊂ k for i ∈ b such that

⋃
i ci = k and

⋂
i ci = 0, and O = {x ∈ X : ∀i ∈

b x(i) ∩ k = ci}. Now let y0 ∈ Y0 be any point such that ∀i ∈ a0 y0(i) ∩ k = ci
and for some i ∈ a0 y0(i) ⊂ k, and for another i ∈ a0 ω \ k ⊂ y0(i). There is
such a point because |a0| ≥ 2 holds by the assumptions. Now, it is clear that
the set f ′′1 (f−1

0 {y0} ∩ O) is exactly the open set of all points y1 ∈ Y1 such that
∀i ∈ a1 y1(i) ∩ k = ci}.

Example 3.4. Let b be a finite set and let b = a0 ∪ a1 be a partition into
nonempty sets. Let X,Y0, Y1 be the closed subsets of P(ω)b, P(ω)a0 , and P(ω)a1

consisting of tuples of pairwise disjoint subsets of ω respectively. Let f0 : X → Y0

and f1 : X → Y1 be the projection functions. Then f0, f1 are continuous, open,
and mutually transcendental functions.

Proof. The continuity and openness is left to the reader. For the transcendental
part, I will show that f1 is transcendental over f0. Let O ⊂ X be a relatively
open nonempty set. Find finite sets ci, di ⊂ ω for each i ∈ b such that ci∩di = 0
and the set {〈zi : i ∈ b〉 ∈ P(ω) : ∀i ∈ b ci ⊂ zi and di∩zi = 0}∩X is a nonempty
subset of O. Note that the sets ci for i ∈ b must be pairwise disjoint, and we
may arrange the sets di so that if i, j ∈ b are distinct elements then ci ⊂ dj .
Let y0 = 〈ci : i ∈ a0〉 and let O1 = {〈zi : i ∈ a0〉 ∈ P(ω) : ∀i ∈ a0 ci ⊂ zi and
di ∩ zi = 0} ∩ Y1; this is a nonempty open subset of Y1. It is clear that for each
point y1 ∈ O1, 〈y0, y1〉 ∈ O holds and the proof is complete.

Another class of examples of transcendental pairs of generic extensions comes
from actions of Polish groups with dense diagonal orbits [5]. I am going to need
a local variant of this notion which appears to be satisfied in all natural actions
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with dense diagonal orbits. Recall that if a group G acts on a set X, then it
also acts coordinatewise on the set Xn for every natural number n.

Definition 3.5. Let G be a Polish group acting continuously on a Polish space
X. The action has

1. dense diagonal orbits if for every n ∈ ω there is a point ~x ∈ Xn such that
{g · ~x : g ∈ G} is dense in Xn.

2. locally dense diagonal orbits if for every open neighborhood U ⊂ G of the
unit and every nonempty open set O ⊂ X there is a nonempty open set
O′ ⊂ O such that for every n ∈ ω there is a point ~x ∈ Xn such that
{g · ~x : g ∈ U} is dense in (O′)n.

Proposition 3.6. Let G be a Polish group acting on a Polish space X with
locally dense diagonal orbits. Let Y ⊂ G × X2 be the closed set of all triples
〈g, x0, x1〉 such that g · x0 = x1. Let PY be its associated Cohen forcing and
〈ġ, ẋ0, ẋ1〉 its names for the generic triple. PY forces the following:

1. ġ is PG-generic over V ;

2. 〈ẋ0, ẋ1〉 is PX2-generic over V ;

3. the model V [ẋ0, ẋ1] is transcendental over V [ġ].

Proof. For the first item, let p ∈ PY be a condition and D ⊂ G an open dense
set. I must find a stronger condition which forces ġ into D. There are nonempty
open neighborhoods U ⊂ G and O ⊂ X such that 〈g, x, g ·x〉 ∈ p whenever g ∈ U
and x ∈ O. Now, just note that the set D ∩U is nonempty; therefore the set of
all triples 〈g, x, g · x〉 where g ∈ U ∩D and x ∈ O is a nonempty relatively open
subset of Y which forces ġ ∈ D as desired.

For the second item, suppose first that p ∈ PY is a condition and D ⊂ X2

is an open dense set. I must find a stronger condition which forces the pair
〈ẋ0, ẋ1〉 into D. There is a point g ∈ G, an open neighborhood U ⊂ G of the
unit, and an open set O ⊂ X such that 〈gh, x0, gh · x0〉 ∈ p for all h ∈ UU−1

and x0 ∈ O. Use the dense orbit assumption to thin out the set O if necessary
so that for every n ∈ ω there is a point ~x ∈ Xn such that {h · ~x : h ∈ U} is
dense in On. Since the set D ⊂ X2 is open dense, there are open sets P0 ⊂ O
and P1 ⊂ gO such that P0 × P1 ⊂ D. By the choice of the set O ⊂ X, there
must be a point x ∈ P0 and a point h ∈ UU−1 such that hx ∈ g−1P1, in other
words ghx ∈ P1. Now the relatively open set of all triples in p such that their
second and third coordinates belong to P0 and P1 respectively is nonempty, and
it forces 〈ẋ0, ẋ1〉 ∈ D as required.

For the third item, suppose that α is an ordinal, τ is a PX2 -name for an
open subset of 2α which is forced to contain V ∩ 2α, and η is a PG-name for an
element of 2α. Suppose that p ∈ PY is a condition. One can find an element
h ∈ G, an open neighborhood U ⊂ G of the unit, and a nonempty open set
O ⊂ X such that 〈gh, x0, gh · x0〉 ∈ p for all h ∈ UU−1 and x0 ∈ O. Use the
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dense orbit assumption to thin out the set O if necessary so that for every n ∈ ω
there is a point ~x ∈ Xn such that {h · ~x : h ∈ U} is dense in On.

Now, use the initial assumption on the name τ to find, for each z ∈ 2α, a
finite partial map hz : α → 2 and a condition O0z × O1z ⊂ O × gO such that
hz ⊂ z and O0z × O1z  [hz] ⊂ τ . Use a compactness argument to find a
finite set a ⊂ 2α such that 2α ⊂

⋃
z∈a[hz]. Now, the dense orbit assumption

provides points x0z ∈ O0z and a point h ∈ UU−1 such that for each z ∈ a,
h · x0z ∈ g−1O1z, or in other words gh · x0z ∈ O1z. Let U ′ ⊂ UU−1 be an open
neighborhood such that for all k ∈ U ′ and all z ∈ a, gk · x0z ∈ O1z. Shrinking
U ′ if necessary, assume that gU ′ decides the value of η �

⋃
z∈a dom(hz). By the

choice of the set a, there must be a point z ∈ a such that gU ′  ȟz ⊂ η. Now
the relatively open set of all triples in p whose coordinates belong to gU ′, O0z

and O1z respectively is nonempty, and it forces η ∈ τ as desired.

Example 3.7. Let Y be the closed subset of S4
∞ consisting of all quadruples

〈g0, g1, g2, g3〉 such that g0g
−1
1 g2g

−1
3 = 1. The Cohen poset PY adds a generic

quadruple 〈ġ0, ġ1, ġ2, ġ3〉. It forces V [ġ0, ġ2] and V [ġ1, ġ3] to be mutually tran-
scendental PS2

∞
-generic extensions of the ground model.

Proof. Consider the continuous action of S2
∞ on S∞ given by (h0, h2) · h1 =

h0h1h
−1
2 . It has locally dense diagonal orbits: if U ⊂ (S∞)2 is an open neigh-

borhood of the unit and O ⊂ S∞ is a nonempty open set, then thinning down
one may assume that there is a number n ∈ ω such that U = {〈h0, h2〉 : h0 �
n = h1 � n is the identity} and O = {h1 : [v] ⊂ h1} for some permutation v of
n. Then the action of U on O is naturally homeomorphic to the whole action of
S2
∞ on S∞. That action though has dense diagonal orbits because already the

conjugation action of S∞ on S∞ has them [5].
Now, to show for example that PY forces V [ġ1, ġ3] to be transcendental over

V [ẋ0, ẋ1], consider the self-homeomorphism of S4
∞ which takes inverses of the

second and third coordinates. Note that 〈g0, g1, g2, g3〉 ∈ Y iff (g0, g
−1
2 )·g−1

1 = g3

and apply Proposition 3.6.

The last class of examples in this section deals with posets other than the Cohen
poset.

Definition 3.8. Let P be a Suslin partial order. Say that P is Suslin-σ-centered
if P =

⋃
n∈ω An where each set An ⊂ P is analytic and centered.

Proposition 3.9. Let P1 be a Suslin poset which is Suslin-σ-centered. Let
V [G0] be an arbitrary generic extension, let H ⊂ P1 be a filter generic over
V [G0] and let G1 = H ∩ V . Then the extensions V [G0], V [G1] are mutually
transcendental.

Proof. I use an apparently novel abstract combinatorial property of σ-linked
posets encapsulated in the following claim.

Claim 3.10. Let Q be a σ-linked poset, and B ⊂ [Q]<ℵ0 be a family of finite
subsets of Q such that for every condition q ∈ Q there is a set in B consisting
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only of conditions stronger than q. Then there is a countable set C ⊂ B such
that every condition in Q is compatible with every condition in some set in C.

Proof. Let Q =
⋃
nDn be a partition of Q into linked subsets. Let M be a

countable elementary submodel of a large structure containing this partition and
the set B; we claim that C = B ∩M works. Suppose that q ∈ Q is a condition
and find a set b ∈ B which consists solely of conditions stronger than q. Let
e = {n ∈ ω : b∩Dn 6= 0}; this is a finite set and therefore e ∈M . By elementarity
of the model M , there is a set c ∈ C such that e = {n ∈ ω : c ∩Dn 6= 0}. Since
the sets Dn for n ∈ ω are linked, it follows that q is compatible with each
element of c as desired.

Let P0 be the poset generating the V [G0] extension and work in V . Fix a
cover P1 =

⋃
nAn consisting of analytic centered sets. To see that V [G1] is

transcendental over V [G0], work in V and fix and ordinal α. Suppose that τ is
a P1-name for an open subset of 2α such that P1  2ω ∩ V ⊂ τ . We will argue
that P0∗Ṗ1  2ω∩V [Ġ0] ⊂ τ/Ġ1. To this end, for each condition p1 ∈ P1 let Op1
be the union of all basic open subsets of 2α which p1 forces to be subsets of τ ; in
particular, p1  Op1 ⊂ τ . Let B ⊂ P<ℵ01 be the set of all finite sets b ⊂ P1 such
that

⋃
p1∈bOp1 = 2α. Now, fix a condition q ∈ P1. As q  2α ∩ V ⊂ τ , it must

be the case that 2α =
⋃
p1≤q Op1 holds, and by a compactness argument, there

is a set b ∈ B consisting only of conditions stronger than q. Thus, assumptions
of the claim are satisfied, and there must be a countable set C ⊂ B such that
every condition in P1 is compatible with all conditions in some set in C. Note
that this property of the set C persists to the model V [G0] by the Shoenfield
absoluteness.

Now, move to the model V [G0], pick a point x ∈ 2α, and a condition p2 ∈ P1;
we must find a strengthening of p2 which forces x̌ ∈ τ/Ġ1. By the work in the
previous paragraph, there is a set c ∈ C such that p2 is compatible with all
conditions in it. Since

⋃
{Op1 : p1 ∈ c} = 2α, there is a condition p1 ∈ c such

that x ∈ Op1 . Any common lower bound of p2 and p1 forces x̌ ∈ τ/Ġ1 as
required.

To see that V [G0] is transcendental over V [G1], let τ be a P0-name for an
open subset of 2α such that P0  2α ∩ V ⊂ Ȯ. Similarly to the previous work,
for each condition p0 ∈ P0 let Op0 be the union of all basic open subsets of 2α

which p0 forces to be subsets of τ and let B ⊂ P<ℵ01 be the set of all finite sets
b ⊂ P1 such that

⋃
p1∈bOp1 = 2α. Thus, for every condition p0 ∈ P0 there is a

set b ∈ B consisting of conditions stronger than p0. Now, let η be a P1-name
for an element of 2α, and let 〈p0, ṗ1〉 be a condition in the iteration P0 ∗ Ṗ1.
We must find a strengthening which forces η ∈ τ/Ġ1. To this end, first use the
centeredness assumption again to strengthen p0 if necessary to find a number
n ∈ ω such that p0  ṗ1 ∈ Ȧn. Let b ∈ B be a set consisting of conditions
stronger than p0, and choose an enumeration b = {pi0 : i ∈ m}. Let {Gi0 : i ∈ m}
be a mutually generic collection of filters on P0 such that pi0 ∈ Gi0 holds for all
i ∈ m. In the model V [Gi0 : i ∈ m], note that the conditions ṗ1/G

i
0 ∈ An have

a common lower bound in the poset P1; let H ⊂ P1 be a filter generic over the

10



model V [Gi0 : i ∈ m] containing them all. Since
⋃
iOpi0 = 2α, there must be

a number i ∈ m such that η/H ∩ V ∈ τ/Gi0. This membership relation is a
statement of the model V [Gi0][H∩V [Gi0]] which is a P0∗Ṗ1 extension of V . Thus,
there has to be a condition stronger than 〈p0, ṗ1〉 forcing it as required.

Example 3.11. Let x0 ∈ ωω be a point Hechler-generic over the ground model,
and x1 ∈ ωω a point Hechler generic over V [x0]. Then V [x0] and V [x1] are
mutually transcendental extensions of V .

Example 3.12. One cannot weaken the σ-centeredness assumption in Exam-
ple 3.9 to σ-linkedness. To see this, let X be a compact metric space with a
Borel probability measure µ. Let V [G] be a generic extension of V in which
there is a compact µ-positive set C ⊂ X containing no points of V ∩ X. Let
P be the random forcing associated with µ and let x ∈ C be a point P -generic
over V [G]. Then V [G] is not compactly transcendental to V [x] since the com-
plement of C is an open set covering X ∩ V but not X ∩ V [x]. Note that V [x]
is transcendental to V [G] by the first half of Proposition 3.9, so transcendence
is not a symmetric property of pairs of extensions.

4 Preservation theorems

As with all similar notions of perpendicularity of generic extensions, transcen-
dence gives rise to a natural companion: a preservation property for Suslin
forcings.

Definition 4.1. Let P be a Suslin forcing. We say that a virtual condition p̄
in P is transcendentally balanced if for every pair of mutually transcendental
generic extensions V [G0], V [G1] inside some ambient forcing extension, and for
all conditions p0 ∈ V [G0] and p1 ∈ V [G1] stronger than p̄, p0 and p1 have a
common lower bound.

I now state and several preservation theorems for transcendentally balanced
extensions of the symmetric Solovay model.

Theorem 4.2. Let κ be an inaccessible cardinal. In cofinally transcendentally
balanced forcing extensions of the symmetric Solovay model derived from κ,
every nonmeager subset of P(ω) contains a collection d of cardinality four such
that

⋂
d = 0 and

⋃
d = ω, both modulo finite.

Proof. Let P be a Suslin forcing which is cofinally transcendentally balanced
below κ. Let W be the symmetric Solovay model derived from κ and work in the
model W . Suppose that p ∈ P is a condition, τ is a P -name, and p  τ ⊂ P(ω)
is a nonmeager set. I must find a set d ⊂ P(ω) of size four such that

⋂
d = 0

and
⋃
d = ω, both modulo finite, and a strengthening of the condition p which

forces ď ⊂ τ .
To this end, let z ∈ 2ω be a point such that p, τ are both definable from

the parameter z and some parameters in the ground model. Let V [K] be an

11



intermediate forcing extension obtained by a poset of cardinality less than κ
such that z ∈ V [K] and V [K] |= P is transcendentally balanced. Work in
V [K]. Let p̄ ≤ p be a transcendentally balanced virtual condition. Let Q be
the Cohen poset of nonempty open subsets of P(ω), adding a single generic
point ż. There must be a condition q ∈ Q and a poset R of cardinality smaller
than κ and an Q × R-name σ for a condition in P stronger than p̄ such that
q Q R  Coll(ω,< κ)  σ P ż ∈ τ . Otherwise, in the model W the condition
p̄ would force τ to be disjoint from the co-meager set of elements of P(ω) which
are Cohen-generic over V [K], contradicting the initial assumption on τ .

Now, let X = {〈x〉 ∈ P(ω)4 :
⋃
i∈4 x(i) = ω and

⋂
i∈4 x(i) = 0} with the

topology inherited from P(ω)4. Let x ∈ X be a point generic over V [K] for
the Cohen poset with X. By Example 3.3, x(0), x(1) are mutually Cohen-
generic elements of P(ω), so are x(2), x(3), and the models V [K][x(0), x(1)]
and V [K][x(2), x(3)] are mutually transcendental. Choose finite modifications
zi of xi such that zi ∈ q holds for all i ∈ 4; each of these points is still Q-
generic over V [K] and meets the condition q. Let Hi : i ∈ 4 be filters on R
mutually generic over the model V [K][x] and let pi = σ/zi, Hi. By Proposi-
tion 2.2, conclude that the models V [K][z0][H0] and V [K][z1][H1] are mutu-
ally generic extensions of V [K], so are V [K][z2][H2] and V [K][z3][H3], and the
models V [K][z0, z1][H0, H1] and V [K][z2, z3][H2, H3] are mutually transcenden-
tal extensions of V [K]. Now, the balance assumption on the virtual condition p̄,
we see that the conditions p0, p1 have a common lower bound p01 in the model
V [K][z0, z1][H0, H1], the conditions p2 and p3 have a common lower bound p23

in the model V [K][z2, z3][H2, H3], and finally the conditions p01 and p23 have
a common lower bound as well. The forcing theorem then shows that such a
lower bound then forces in the model W that ži ∈ τ holds for all i ∈ 4. The
proof is complete.

For every number n ≥ 2 let Θn be the hypergraph of arity n on P(ω) consisting
of sets d of size n such that

⋂
d = 0 and

⋃
d = ω, both modulo finite.

Corollary 4.3. Let κ be an inaccessible cardinal. In cofinally transcendentally
balanced forcing extensions of the symmetric Solovay model derived from κ, the
chromatic number of Θ4 is uncountable.

Theorem 4.4. Let κ be an inaccessible cardinal. In cofinally transcendentally
balanced forcing extensions of the symmetric Solovay model derived from κ,
every nonmeager subset of S∞ contains a quadruple of distinct points solving
the equation g0g

−1
1 g2g

−1
3 = 1.

Proof. Let P be a Suslin forcing which is cofinally transcendentally balanced
below κ. Let W be the symmetric Solovay model derived from κ and work in the
model W . Suppose that p ∈ P is a condition, τ is a P -name, and p  τ ⊂ S∞
is a nonmeager set. I must find distinct points z0, z1, z2, z3 ∈ S∞ such that
z0z
−1
1 z2z

−1
3 = 1 and a strengthening of the condition p which forces all four of

these points into τ .
To this end, let z ∈ 2ω be a point such that p, τ are both definable from

the parameter z and some parameters in the ground model. Let V [K] be an
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intermediate forcing extension obtained by a poset of cardinality less than κ
such that z ∈ V [K] and V [K] |= P is transcendentally balanced. Work in
V [K]. Let p̄ ≤ p be a transcendentally balanced virtual condition. Let Q
be the Cohen poset of nonempty open subsets of S∞, adding a single generic
point ġ. There must be a condition q ∈ Q and a poset R of cardinality smaller
than κ and an Q × R-name σ for a condition in P stronger than p̄ such that
q Q R  Coll(ω,< κ)  σ P ġ ∈ τ . Otherwise, in the model W the condition
p̄ would force τ to be disjoint from the co-meager set of elements of S∞ which
are Cohen-generic over V [K], contradicting the initial assumption on τ .

Now, let X = {x ∈ S4
∞ : x(0)x(1)−1x(2)x(3)−1 = 1} with the topology in-

herited from S4
∞. Consider the nonempty relatively open set O ⊂ X given by

O = q4 ∩ X. Note that the set O is indeed nonempty because any constant
quadruple in S4

∞ belongs to X. Let 〈zi : i ∈ 4〉 ∈ O be a tuple generic over V [K]
for the Cohen poset with X. By Example 3.7, z0, z2 are mutually Cohen-generic
elements of S∞ below the condition q, so are z1, z3, and the models V [K][z0, z2]
and V [K][z1, z3] are mutually transcendental. Let Hi : i ∈ 4 be filters on R
mutually generic over the model V [K][z0, z1, z2, z3] and let pi = σ/gi, Hi. By
Proposition 2.2, conclude that the models V [K][z0][H0] and V [K][z2][H2] are
mutually generic extensions of V [K], so are V [K][z1][H1] and V [K][z3][H3], and
the models V [K][z0, z2][H0, H2] and V [K][z1, z3][H1, H3] are mutually transcen-
dental extensions of V [K]. Now, the balance assumption on the virtual condition
p̄, we see that the conditions p0, p2 have a common lower bound p02 in the model
V [K][z0, z2][H0, H2], the conditions p1 and p3 have a common lower bound p13

in the model V [K][z1, z3][H1, H3], and finally the conditions p02 and p13 have
a common lower bound as well. The forcing theorem then shows that such a
lower bound then forces in the model W that ži ∈ τ holds for all i ∈ 4. The
proof is complete.

Corollary 4.5. Let κ be an inaccessible cardinal. In cofinally transcendentally
balanced forcing extensions of the symmetric Solovay model derived from κ,
the chromatic number of the hypergraph on S∞ consisting of solutions to the
equation g0g

−1
1 g2g

−1
3 = 1 is uncountable.

Certain consistency results require amalgamation diagrams with multiple forcing
extensions. The following definitions and a theorem show one such possibility.

Definition 4.6. A finite collection {V [Gi] : i ∈ a} of generic extensions is mu-
tually transcendental if for every index j ∈ a, the models V [Gj ] and V [Gi : i ∈
a, i 6= j] are mutually transcendental. The collection is in n-tuples mutually
transcendental if every subcollection of size n is mutually transcendental.

Definition 4.7. Let m > n be natural numbers. Let P be a Suslin forcing.

1. A virtual condition p̄ in P is m,n-transcendentally balanced if for every
tuple 〈V [Gi] : i ∈ m〉 of generic extensions, mutually transcendental in
n-tuples, and conditions pi ≤ p̄ in the respective models V [Gi], the con-
ditions pi for i ∈ m have a common lower bound.
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2. The poset P is m,n-transcendentally balanced if below every condition
p ∈ P there is an m,n-transcendentally balanced virtual condition.

Theorem 4.8. Let κ be an inaccessible cardinal and n ≥ 2 be a number. In
cofinally n+ 1, n-transcendentally balanced forcing extensions of the symmetric
Solovay model derived from κ, every nonmeager subset of P(ω) contains n + 1
many sets which modulo finite form a partition of ω.

Proof. Let P be a Suslin forcing which is cofinally n + 1, n-transcendentally
balanced below κ. Let W be the symmetric Solovay model derived from κ and
work in the model W . Suppose that p ∈ P is a condition, τ is a P -name, and
p  τ ⊂ P(ω) is a nonmeager set. I must find a collection {ai : i ∈ n+ 1} which
is modulo finite a partition of ω and a condition stronger than p which forces
every element of this collection into τ .

To this end, let z ∈ 2ω be a point such that p, τ are both definable from
the parameter z and some parameters in the ground model. Let V [K] be an
intermediate forcing extension obtained by a poset of cardinality less than κ
such that z ∈ V [K] and V [K] |= P is n+ 1, n-transcendentally balanced. Work
in V [K]. Let p̄ ≤ p be a n + 1, n-transcendentally balanced virtual condition.
Let Q be the Cohen poset of nonempty open subsets of P(ω), adding a single
generic point ȧ. There must be a condition q ∈ Q and a poset R of cardinality
smaller than κ and an Q×R-name σ for a condition in P stronger than p̄ such
that q Q R  Coll(ω,< κ)  σ P ȧ ∈ τ . Otherwise, in the model W the
condition p̄ would force τ to be disjoint from the co-meager set of elements of
P(ω) which are Cohen-generic over V [K], contradicting the initial assumption
on τ .

Let X be the closed subset of P(ω)n+1 consisting of tuples of sets which
form a partition of ω. For every set b ⊂ n + 1 of cardinality n, consider the
closed subset Yb of P(ω)b consisting of pairwise disjoint sets. It is easy to check
that the projection map from X to Yb is open. Thus, the poset PX of nonempty
relatively open subsets of X adds a generic tuple ẋ, and the restriction ẋ � b
is generic for the poset PYb

of nonempty relatively open subsets of Y by [7,
Proposition 3.1.1]. By Example 3.4, PX forces the tuple {V [K][ẋ(i)] : i ∈ n+1}
to be in n-tuples mutually transcendental over V [K].

Now, move to W and find an n+ 1-tuple x which is generic over the model
V [K] for the poset PX . Let Hi ⊂ R for i ∈ n + 1 be a collection of filters
mutually generic over the model V [K][x]; use Proposition 2.2 and the work in
the previous paragraph to argue that the tuple {V [K][xi][Hi] : i ∈ n + 1} is in
n-tuples mutually transcendental. For each i ∈ n+ 1, make a finite adjustment
to x(i) so that the resulting set ai ⊂ ω meets the condition q; note that ai is
Q-generic over V [K]. Let pi = σ/ai, Hi. The balance assumption on the virtual
condition p̄ shows that the conditions pi for i ∈ n + 1 have a common lower
bound. That lower bound forces each set ai for i ∈ ω into τ as required.

Corollary 4.9. Let n ≥ 2 be a natural number and Γn be the hypergraph on
P(ω) of n + 1-tuples which form a modulo finite partition of ω. In cofinally
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n + 1, n-transcendentally balanced forcing extensions of the symmetric Solovay
model derived from κ, the chromatic number of Γn+1 is uncountable.

One can also prove a preservation theorem of a different type:

Theorem 4.10. Let κ be an inaccessible cardinal. In cofinally transcendentally
balanced forcing extensions of the symmetric Solovay model derived from κ,
for every uncountable set A ⊂ ωω there is a function in ωω which pointwise
dominates uncountably many elements of A.

Proof. Let P be a Suslin forcing which is cofinally transcendentally balanced
below κ. Let W be the symmetric Solovay model derived from κ, let n > 1
be a number, and work in the model W . Suppose that p ∈ P is a condition
and τ is a P -name such that p  τ ⊂ ωω is an uncountable set. I must find a
function h ∈ ωω and a condition stronger than p which forces that ȟ dominates
uncountably many elements of τ .

To this end, let z ∈ 2ω be a point such that p, τ are both definable from
the parameter z and some parameters in the ground model. Let V [K] be an
intermediate forcing extension obtained by a poset of cardinality less than κ such
that z ∈ V [K] and V [K] |= P is transcendentally balanced. Work in V [K]. Let
p̄ ≤ p be a transcendentally balanced virtual condition. Since the set τ is forced
to be uncountable, there must be a poset Q0 and Q0-names η0 for an element of
ωω which is not in V [K] and σ0 for a condition in P stronger than p̄ such that
Q0  Coll(ω,< κ)  σ0  η0 ∈ τ . Now, let H0 ⊂ Q0 be a filter generic over
the model V [K], let p0 = σ0/H0 and let x = η0/H0. Let h ∈ ωω be a function
Hechler generic over the model V [K][H0] which pointwise dominates x. By
Proposition 3.9, V [K][H0] and V [K][h] are mutually transcendental extensions
of V [K].

We claim that in the modelW , p̄  ȟ pointwise dominates uncountably many
elements of τ . This will complete the proof. Suppose towards contradiction that
this fails. Work in the model V [K][h]. There must be a poset Q1 of cardinality
less than κ, a Q1-name η1 for a countable sequence of elements of ωω, and a
Q1-name σ1 for a condition in P stronger than p̄ such that Q1  Coll(ω,< κ) 
σ1 P η1 enumerates all elements of τ pointwise dominated by ȟ.

Now, in the model W find a filter H1 ⊂ Q1 generic over V [K][H0][h]. By
Proposition 2.2 V [K][H0] and V [K][h][H1] are mutually transcendental exten-
sions of V [K]. Let p1 = σ1/H1 and y = η1/H1; these objects belong to the
model V [K][h][H1]. By the mutual transcendenceof the models V [K][H0] and
V [K][h][H1], x /∈ V [K][h][H1]; in particular, x /∈ rng(y). By the mutual tran-
scendence and the balance of the condition p̄, the conditions p0, p1 are compat-
ible in P . Their common lower bound forces x̌ ∈ τ as well as y̌ to enumerate
all elements of τ pointwise dominated by ȟ. This is impossible as x̌ is pointwise
dominated by h and does not belong to the range of y.
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5 Examples II

The whole enterprise in the previous sections would be pointless if there were
no substantial transcendentally balanced posets. In this section, I will produce
or point out a number of examples in this direction. At first, I consider posets
or classes of posets known from previous work.

Proposition 5.1. Every placid Suslin poset is transcendentally balanced.

This class of examples is very broad: it includes among others posets adding a
Hamel basis for a Polish space over a countable field, posets adding maximal
acyclic subsets to Borel graphs, or posets adding a selector to pinned Borel
equivalence relations classifiable by countable structures.

Proof. Recall [7, Definition 9.3.1] that a poset P is placid if below every condi-
tion p ∈ P there is a virtual balanced condition p̄ ≤ p which is placid: whenever
V [G0] and V [G1] are generic extensions such that V [G0] ∩ V [G1] = V and
p0 ∈ V [G0] and p1 ∈ V [G1] are conditions stronger than p̄, then p0, p1 are
compatible. Now, if V [G0], V [G1] are mutually transcendental extensions of the
ground model, then V [G0]∩V [G1] = V by Proposition 2.4, and therefore a placid
virtual condition also transcendentally balanced. The proposition follows.

Proposition 5.2. Let X be a Kσ Polish field with a countable subfield F . The
poset adding a transcendence basis to X over F is transcendentally balanced.

Proof. Reviewing the proof of [7, Theorem 6.3.9] it becomes clear that the
only feature of mutually generic extensions V [G0] and V [G1] there is that if
p is a multivariate polynomial with coefficients in F , ~x0 ∈ X ∩ V [G0] and
~x1 ∈ X∩V [G1] are tuples such that p(~x0, ~x1) = 0, then there are tuples ~x′0, ~x

′
1 in

the ground model such that p(~x′0, ~x1) = p(~x0, ~x
′
1) = 0. However, this is satisfied

for mutually transcendental extensions V [G0], V [G1] as well by Corollary 2.6.
This completes the proof.

Proposition 5.3. Let E be an equivalence relation on a Polish space of one of
the following types:

1. E is Kσ;

2. for some sequence 〈Yn, dn : n ∈ ω〉 of countable metric spaces, E is the
equivalence relation on X =

∏
n Yn connecting points x0, x1 if the dis-

tances dn(x0(n), x1(n)) tend to zero as n tends to infinity.

The poset adding a selector to E is transcendentally balanced.

Proof. Note that the equivalence relation E is pinned ([4, Chapter 17], but it
follows directly from Corollary 2.7 or Proposition 2.8) and therefore [7, Theorem
6.4.5] applies. The only feature of mutually generic extensions V [G0] and V [G1]
in the proof of the balance of P is that every E-class represented both in V [G0]
and V [G1] is represented in V . However, this feature holds true for mutually
transcendental extensions by Corollary 2.7 or Proposition 2.8.
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Now it is time to produce transcendentally balanced posets for some new and
more difficult tasks. I will only look at coloring posets for hypergraphs of a
certain type.

Definition 5.4. Let n ≥ 2 be a natural number, X a Polish space, and Γ a
hypergraph on X of arity n.

1. Γ is redundant if for every set a ⊂ X of cardinality n − 1, the set {x ∈
X : a ∪ {x} ∈ Γ} is countable.

If Γ is redundant, then

2. a set b ⊂ X is Γ-closed if for every set a ⊂ b of cardinality n − 1 the
countable set {x ∈ X : a ∪ {x} ∈ Γ} is a subset of b;

3. if a set b ⊂ X is Γ-closed, define the equivalence relation E(b,Γ) on X \ b
as the smallest equivalence containing all pairs {x0, x1} such that for some
set a ⊂ b of cardinality n− 2, a ∪ {x0, x1} ∈ Γ.

Example 5.5. The hypergraph Γ on R of arity 3 consisting of solutions to the
equation x3 + y3 + z3 − 3xyz = 0 is redundant. Every real closed subfield of R
is Γ-closed.

Example 5.6. The hypergraph Γ on R2 consisting of vertices of equilateral
triangles is redundant. A similar hypergraph on R3 is not redundant.

Example 5.7. Let n ≥ 2 be a number. The hypergraph Γn on P(ω) consist-
ing of n-tuples which modulo finite partition ω is redundant. Every Boolean
subalgebra of P(ω) containing all singletons is Γn-closed.

Example 5.8. Let G be a Polish group with a countable dense subset d ⊂ G.
Let n ≥ 2 be a natural number. The hypergraph Σ(G,n) consisting of all n-
tuples whose product belongs to d is redundant. Note that if G is not abelian,
then the product depends on the order of the elements, so one must say “the
product of all elements in some order belongs to d”.

Example 5.9. Let G be a Polish group and n ≥ 2 be a natural number. The
hypergraph Θ(G,n) of all 2n-tuples whose alternating product g0g

−1
1 g2g

−1
3 . . .

in some order is equal to 1 is redundant.

In the common case that the set b ⊂ X is countable, the equivalence relation
E(b,Γ) has all classes countable since it is the path connectedness equivalence
of a locally countable graph. If the redundant hypergraph Γ is Borel, then the
equivalence relation E(b,Γ) is Borel as well. The complexity of E(b,Γ) never en-
ters the considerations of this paper; it can be an arbitrarily complex countable
Borel equivalence relation, but in the natural examples it is hyperfinite. For
this paper, the following feature of these equivalences is much more relevant.
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Proposition 5.10. Let X be a Kσ Polish space and Γ a redundant Fσ hy-
pergraph of arity n ≥ 2 on X. Let V [G0], V [G1] be mutually transcendental
generic extensions of the ground model. Then on X ∩ V [G0], E(V ∩ X,Γ) =
E(V [G1] ∩X,Γ).

Proof. The left-to-right inclusion is obvious as increasing the set b increases
the equivalence relation E(b,Γ). The right-to-left inclusion is the heart of the
matter. Suppose that x, x′ ∈ X ∩ V [G0] are two points in X ∩ V [G0] which
are E(X ∩ V [G1],Γ) equivalent. Then there must be a number m ∈ ω, points
xi ∈ X for i ≤ m and sets yi ∈ [X ∩ V [G1]]n−2 for i < m such that x = x0,
x′ = xm, and ∀i < m yi ∪ {xi, xi+1} ∈ Γ. The tuple 〈xi : i ≤ m, yi : i < m〉 will
be called a walk from x to x′.

Let K ⊂ X be a compact set coded in the ground model containing all points
mentioned in the walk. Let d be a complete metric on X and let ε > 0 be a
positive rational such that for any two points mentioned in the walk, if they are
distinct then they have d-distance at least ε. Let ∆ ⊂ Γ be a ground model
coded compact set such that all hyperedges in the walk belong to ∆.

Now, consider the space Y = {〈zi : i ∈ m〉 : zi ∈ [K]n−2 and distinct points
in each zi have a distance at least ε}; this is a compact subspace of ([K]n−2)m

in the ground model. Consider the set C ⊂ Y consisting of tuples 〈zi : i ∈ m〉
which can serve in a walk from x to x′ which uses only points in K, whose
hyperedges belong to ∆, and in which any two distinct points have distance at
least ε. The set C ⊂ Y is compact, as it is a projection of a compact set of
walks. The set C is coded in V [G0], and the sequence 〈yi : i ∈ m〉 ∈ V [G1]
belongs to it. By the mutual transcendence of the models V [G0] and V [G1],
the set C contains a ground model element. A review of definitions reveals that
this means that x, x′ are E(X ∩ V,Γ)-related.

Fσ redundant hypergraphs of arity three or four on Kσ spaces can be colored
by a transcendentally balanced Suslin forcing. The following definition and
theorem provide a general treatment. However, in certain special cases it is
possible to find posets which have stronger preservation properties, as is done
in [7, Section 8.2]. Arity five (and higher) presents challenges that I do not
know how to overcome in this generality, as the discussion of configurations in
the proof of Claim 5.13 becomes untenable.

Definition 5.11. Let X be a Kσ Polish space and Γ be a redundant Fσ hyper-
graph of arity three or four on X. The coloring poset PΓ consists of all partial
Γ colorings p : X → ω × ω whose domain is a countable Γ-closed subset of X.
The ordering is defined by p1 ≤ p0 if p0 ⊂ p1 and for every E(Γ,dom(p0))-class
a ⊂ dom(p1), p′′1a ⊂ ω × ω has all vertical sections finite (and, if the arity of Γ
is four, the function p1 � a is an injection).

Theorem 5.12. Let Γ be a redundant Fσ hypergraph of arity three on a Kσ

Polish space X. The poset PΓ is Suslin and σ-closed, and it forces the union of
the generic filter to be a total Γ-coloring on X. Moreover,
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1. for every total Γ-coloring c : X → ω × ω, the pair 〈Coll(ω,X), č〉 is tran-
scendentally balanced;

2. for every balanced pair 〈Q, τ〉 there is a total coloring c : X → ω × ω such
that the pairs 〈Q, τ〉 and 〈Coll(ω,X), č〉 are equivalent;

3. distinct total Γ-colorings provide inequivalent balanced pairs.

In particular, under CH, the poset PΓ is transcendentally balanced.

Proof. The easiest part is the σ-closure. If 〈pi : i ∈ ω〉 is a decreasing sequence
of conditions in PΓ, then

⋃
i pi is their common lower bound. For the property

of the generic filter, I need to show that for every condition p0 and a point x ∈ X
there is a condition p1 ≤ p0 such that x ∈ p1. To see that, just find a countable
Γ-closed set b ⊂ X such that dom(p0)∪ {x} ⊂ b, enumerate the set b \ dom(p0)
by {xn : n ∈ ω}, and define a function p1 : b → ω × ω by the demands p0 ⊂ p1

and p1(xn) = (n, n). It is not difficult to see that p1 ∈ PΓ and p1 ≤ p0 is as
required.

It is clear that the ordering on PΓ is a Borel relation. Borelness of the
compatibility relation of the poset PΓ follows immediately from the following
claim, which is used later as well.

Claim 5.13. Let p0, p1 ∈ PΓ be conditions. Then p0 is compatible with p1 if
and only if the conjunction of the following item occurs:

1. p0 ∪ p1 is a function;

2. for every E(dom(p0),Γ)-class a, p′′1a ⊂ ω×ω has all vertical sections finite
(and, if the arity of Γ is four, the function p1 � a is injective);

3. the same demand as in (2) except with 0, 1 interchanged.

Proof. The failure of any of the items excludes the existence of the lower common
bound by the definition of the ordering. Now, suppose that the items are satis-
fied. Let b ⊂ X be a countable Γ-closed set such that dom(p0) ∪ dom(p1) ⊂ b,
write c = b \ (dom(p0) ∪ dom(p1)), enumerate c as {xn : n ∈ ω} and choose a
function p : b→ ω × ω so that p0 ∪ p1 ⊂ p and for every n ∈ ω, p(xn) = (n,m)
so that the point (n,m) does not belong to any of the sets p′′1a where a is the
E(dom(p0),Γ)-class such that xn ∈ a, or p′′0a where a is the E(dom(p1),Γ)-class
such that xn ∈ a. This is possible by items (2) and (3). I will show that p ∈ PΓ

and p is a lower bound of p0, p1.
To show that p ∈ PΓ, it is enough to verify that p is a Γ-coloring. Suppose

that e is a Γ-hyperedge, and work to show that p � e is not constant. We first
deal with the case where the arity of Γ is three.
Case 1. e∩ c contains more than one element. Then p � e is not constant since
p � c is injective.
Case 2. e ∩ dom(p0) contains more than one element. By the Γ-closure of
dom(p0) this means that e ⊂ dom(p0) and so p � e is not constant since p0 is a
Γ-coloring.
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Case 3. e ∩ dom(p1) contains more than one element. This case is symmetric
to Case 2.
Case 4. The last configuration is that the sets c, dom(p0), and dom(p1) con-
tain one point of e each. Call these points y0, y1, y2 respectively. Then y0 is
E(dom(p1),Γ)-related to y1. By the description of p then, p(y0) 6= p(y1) holds,
and p � e is not constant as desired.

If the arity of Γ is four, there are more configurations to discuss, and in one
of them the injectivity demand will play a key role.
Case 1. e∩ c contains more than one element. Then p � e is not constant since
p � c is injective.
Case 2. e ∩ dom(p0) contains more than two elements. By the Γ-closure of
dom(p0) this means that e ⊂ dom(p0) and so p � e is not constant since p0 is a
Γ-coloring.
Case 3. e∩ dom(p1) contains more than two elements. This case is symmetric
to Case 2.
Case 4. e ∩ dom(p0) and e ∩ dom(p1) both contain exactly two elements.
Writing {y0, y1} = e ∩ dom(p1), it follows that y0, y1 are E(dom(p0),Γ)-related
and therefore by item (2) they receive distinct p1-colors. Thus p � e is not
constant.
Case 5. Both e ∩ c and e ∩ dom(p0) contain exactly one element. Denoting
these points by y0, y1 respectively, it is clear that they are E(dom(p1),Γ)-related.
Thus, p(y0) 6= p0(y1) by the choice of the function p, and p � e is not constant.
Case 6. Both e ∩ c and e ∩ dom(p1) contain exactly one element. This case is
symmetric to Case 5.

Finally, I have to show that p is a common lower bound of p0, p1. By sym-
metry, it is enough to show that p ≤ p0 holds. To verify that, note that for
every E(dom(p0),Γ) class a ⊂ b, p′′1a has all vertical sections finite by item (2)
and moreover, p′′(a \ dom(p0)) has all vertical sections of cardinality at most
one by the choice of p. In total, p′′a has all vertical sections finite. If the arity
of Γ is four, then the function p1 � a is injective by item (2) and p � a \ dom(p1)
is an injection and uses no values that p1 � a uses by the choice of p. In total,
the function p � a is an injection. This shows that p ≤ p0 holds as required.

Now, for the first item of the theorem. Suppose that c : X → ω×ω is a total
coloring. Clearly, Coll(ω,X)  č ∈ PΓ holds. Now suppose that V [G0], V [G1]
are mutually transcendental generic extensions of the ground model and p0 ∈
V [G0], p1 ∈ V [G1] are conditions stronger than c. I must prove that the con-
ditions are compatible. To do this, use Claim 5.13. It is clear that p0 ∩ p1 is a
function, since the domains of p0 and p1 intersect in X∩V , and on that set both
p0, p1 are equal to c. To verify the demand (2) of Claim 5.13, just note that
E(dom(p0),Γ) � dom(p1) is equal to E(X ∩V,Γ) � dom(p1) by Proposition 5.10
and use the fact that p1 ≤ c holds. Demand (3) of Claim 5.13 is verified in a
symmetric way.

For the second item of the theorem, let 〈Q, τ〉 be a balanced pair. Strength-
ening τ if necessary, we may assume that Q  X ∩ V ⊂ dom(τ). A balance
argument then shows that for every ground model point x ∈ X there is a pair
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c(x) ∈ ω × ω such that Q  τ(x̌) = c(x). I claim that the Γ-coloring c works
as in (2). It will be enough to show that Q  τ ≤ č. If this failed, then there
must be a condition q ∈ Q which forces that there is some E(X ∩ V,Γ)-class
a ⊂ dom(τ) such that τ � a has an infinite vertical section. Let G0, G1 ⊂ Q
be mutually generic filters containing the condition q and let p0 = τ/G0 and
p1 = τ/G1. The two conditions p0, p1 should be compatible in PΓ, but the
contradictory assumption together with Claim 5.13 shows that they are not.

The third item of the theorem is immediate. For the last sentence, suppose
that the continuuum hypothesis holds and let p ∈ PΓ be a condition. I must
find a total coloring c : X → ω × ω which is stronger than p in the sense of the
ordering on the poset PΓ. To do this, use the CH assumption to find a continuous
increasing sequence 〈Mα : α ∈ ω1〉 of countable elementary submodels of some
large structure such that Γ, p ∈M0 and X =

⋃
αMα. Find a total map c : X →

ω×ω such that p ⊂ c and on each of the sets X ∩M0 \dom(p), X ∩Mα+1 \Mα

it is an injection with the range included in the diagonal on ω × ω. Note that
each set X ∩Mα is Γ-closed by elementarity, so any Γ-hyperedge which is not
a subset of dom(p0) must have two elements coming from the same set on the
above list; in conclusion, the map c is a Γ-coloring. It is easy to check that c ≤ p
as required.

In arity four, there are many closed redundant hypergraphs such that their
coloring number being equal to ℵ0 is equivalent to the continuum hypothesis–
for example, the hypergraph of rectangles in R2 [2]. Thus, in arity four the CH
assumption in the theorem is to some extent necessary. I do not know if the
assumption is also necessary in arity three in general. There are many specific
hypergraphs in which the requisite colorings have been proved to exist in ZFC.

The poset PΓ in arity three or four has an important additional preservation
property.

Theorem 5.14. (ZFC+CH) Let X be a Kσ Polish space and Γ a redundant Fσ-
hypergraph on it of arity three (or four). The poset PΓ is 4, 3-transcendentally
balanced (or 5, 4-transcendentally balanced).

Proof. I present the proof for arity three. In view of Theorem 5.12, it will be
enough to show the following. If c : X → ω × ω is a total Γ coloring, and
{V [Gi] : i ∈ 4} is a collection or extensions in triples mutually transcendental,
pi ∈ V [Gi] for i ∈ 4 are conditions stronger than c, then the conditions {pi : i ∈
4} have a common lower bound.

To do this, work in the model V [Gi : i ∈ 4]. Let b ⊂ X be a Γ-closed subset
of X such that

⋃
i pi ⊂ b. Let d = b \

⋃
i dom(pi) and enumerate the elements

of d as {xn : n ∈ ω}. Now, define a lower bound p of the conditions {pi : i ∈ 4}
as a function with domain b such that

⋃
i pi ⊂ p and for each n ∈ ω, p(xn) is

some pair (n,m) such that for no pair i, j ∈ 4 of distinct indices, writing a for
the E(dom(pi),Γ)-class to which xn belongs, (n,m) does not belong to p′′j a.

First of all, observe that the requirements on p can be met. For any pair i, j ∈
4 of distinct indices, the models V [Gi] and V [Gj ] are mutually transcendental.
By Proposition 5.10, the equivalences E(dom(pi),Γ) and E(X ∩ V,Γ) coincide

21



on dom(pj), and since pj ≤ c, it is the case that p′′j a has all vertical sections
finite. Thus the function p can be found as required.

Now, I have to prove that p ∈ PΓ holds and p is a common lower bound of
all conditions pi for i ∈ 4. This follows nearly literally the proof of Claim 5.13,
with the consideration of one extra (impossible) configuration. Namely, it is im-
possible for there to be distinct indices i0, i1, i2 and a hyperedge e ⊂ b such that
each set dom(pik) for k ∈ 3 contains exactly one element of e. This is so because
the redundancy of Γ together with a Mostowski absoluteness argument shows
that e ⊂ V [Gi0 , Gi1 ] and V [Gi2 ]∩V [Gi0 , Gi1 ] = V by the mutual transcendence
assumption.

Finally, we are in position to prove the theorems in the introduction. Start
in the symmetric Solovay model. For Theorem 1.1, let G be a Kσ Polish group
and let ∆(G) be the closed hypergraph of all solutions to g0g

−1
1 g2g

−1
3 = 1. It is

immediate that ∆(G) is a redundant hypergraph of arity four. The poset P∆(G)

of Definition 5.11 is transcendentally balanced under CH by Theorem 5.12. By
Corollary 4.5, in the P∆(G) extension of the Solovay model, ∆(G) has countable
chromatic number while ∆(S∞) does not.

For Theorem 1.2, consider the hypergraph Γ3 on P(ω) of arity three con-
sisting of triples which modulo finite form a partition of ω. It is clearly a
redundant hypergraph. The poset PΓ3 of Definition 5.11 is (under CH, but in
fact also in good old ZFC) 4, 3-transcendentally balanced by Theorem 5.14. By
Corollary 4.9, in the PΓ3

-extension of the Solovay model, the chromatic number
of Γ3 is countable while that of Γ4 is uncountable. Theorem 1.3 is proved in the
same way. Finally, Theorem 1.4 just restates Corollary 4.3.
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