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Jindřich Zapletal
University of Florida

zapletal@ufl.edu

August 22, 2021

Abstract

It is consistent that ZF+DC holds, the hypergraph of rectangles on a
given Euclidean space has countable chromatic number, while the hyper-
graph of equilateral triangles on R2 does not.

1 Introduction

This paper continues the study of algebraic hypergraphs on Euclidean spaces
from the point of view of their chromatic numbers in choiceless context, started
in [7, 8, 6]. In the context of ZFC, such hypergraphs were completely classified
by Schmerl regarding their countable chromatic number [5]. In the choiceless
context, the study becomes much more difficult and informative; in particular,
the arity and dimension of the hypergraphs concerned begin to play much larger
role. In this paper, I compare chromatic numbers of equilateral triangles with
that of rectangles.

Definition 1.1. ∆ denotes the hypergraph of equilateral triangles on R2. Let
n ≥ 2 be a number. Γn denotes the hypergraph of Euclidean rectangles on Rn.

In the base theory ZFC, these hypergraphs are well-understood. By an old result
of [1], ∆ has countable chromatic number. On the other hand, the chromatic
number of Γn is countable if and only if the Continuum Hypothesis holds [2],
this for every n ≥ 2. In the base theory ZF+DC, I present an independence
result:

Theorem 1.2. Let n ≥ 2. It is consistent relative to an inaccessible cardinal
that ZF+DC holds, the chromatic number of Γn is countable, yet the chromatic
number of ∆ is not.

In fact, I prove much stronger statement than the theorem indicates. There
is nothing much specific to ∆; it is only important that it is a nonempty al-
gebraic hypergraph of arity three invariant under similarities of the underlying
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Euclidean metric space. It is possible to generalize further to replace ∆ with
many natural non-algebraic hypergraphs. At the same time, geometry of rect-
angles is exploited thoroughly and it is hard to see a meaningful generalization
of the argument to hypergraphs different from Γn. The consistency result can
be achieved simultaneously for all n ≥ 2.

It is interesting to compare the proof of Theorem 1.2 with the techniques
of [7] where I separate the chromatic number of Γn from that of Γn+1. While
the general approach is very similar, the coloring posets used have different
dimension characteristics and cannot be used interchangeably. It appears that
there is no canonical poset for coloring the rectangle hypergraph in a given
dimension.

The paper follows the set theoretic standard of [3]. The calculus of geometric
set theory and balanced virtual conditions in Suslin forcings is developed in [4,
Section 5.2].

2 A preservation theorem

In this section, I prove a preservation theorem for the chromatic number of ∆.
In order to deal with ∆ efficiently, I place it within the very general class of
hypergraphs on Euclidean spaces invariant under similarities.

Definition 2.1. Let n ≥ 1 be a number. A similarity is a permutation g
of Rn such that for some constant c > 0, for all points x, y ∈ Rn, d(x, y) =
c · d(g(x), g(y)), where d is the usual Euclidean distance on Rn.

The following fact is a basic feature of Euclidean geometry; the proof is left to
the reader.

Fact 2.2. Let n ≥ 1 be a number.

1. Similarities of Rn form a Polish group Gn under the pointwise convergence
topology;

2. for any pair {x0, x1} ∈ [Rn]2, the map g 7→ {g(x0), g(x1)} is a continuous
open surjection from Gn to [Rn]2.

Every hypergraph on Rn which is defined by homogeneous equations on the
distances between points in the hyperedges is invariant under similarities. This
includes the hypergraphs of equilateral triangles, isosceles triangles, squares,
rectangles, parallelograms etc. The following simple proposition is the only
feature of this class of hypergraphs I use in this paper. Recall that for a Polish
space X, the Cohen poset PX consists of nonempty open subsets of X ordered
by inclusion. It adds a single point of X, the unique point which belongs to all
(reinterpretations of the) open sets in the generic filter. Such point is called a
(Cohen) generic element of X.

Proposition 2.3. Let n,m ≥ 1 be numbers. Let Γ ⊂ (Rn)m be a nonempty
closed set invariant under similarities, in which injective m-tuples are dense.
Let 〈xi : i ∈ m〉 be a PΓ-generic hyperedge.
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1. For every index i ∈ m, the point xi is a Cohen generic element of Rn over
V ;

2. for distinct indices i, j ∈ m, the models V [xi], V [xj ] are mutually generic.

Proof. Let i, j ∈ m be distinct indices. By [4, Proposition 3.1.1], it is enough
to show that on the relatively open dense set O ⊂ Γ consisting of injective
n-tuples, the projection π : O → (Rn)2 associated with coordinates i and j
is an open function. To see this, let P ⊂ O be a relatively open set and
〈yk : k ∈ m〉 ∈ P a point. Let U ⊂ Gn be an open neighborhood of the
unit such that 〈g(yk) : k ∈ m〉 ∈ P holds for all g ∈ U . Note that the tuple
〈g(yk) : k ∈ m〉 automatically belongs to Γ as Γ is invariant under similarities.
By Fact 2.2(2), the set {〈g(yi), g(yj)〉 : g ∈ W} is an open subset of (Rn)2, and
it is a subset of the projection of P containing the point 〈yi, yj〉.

To state a reasonably general preservation theorem for balanced extensions of
the Solovay model, I recall the notion of m, 2-balance [4, Definition 13.1.1].

Definition 2.4. Let P be a Suslin forcing.

1. A virtual condition p̄ in P ism, 2-balanced if for every collection 〈V [Gi] : i ∈
m〉 of pairwise muually generic extensions of V , every collection 〈pi : i ∈
m〉 of conditions in P stronger than p̄ in the respective generic extensions
has a common lower bound;

2. P is m, 2-balanced if below every condition in p there is an m, 2-balanced
virtual condition.

The following theorem is stated using the parlance of [4, Convention 1.7.18].

Theorem 2.5. Let n,m ≥ 1 be numbers. Let Γ ⊂ (Rn)m be a nonempty closed
hypergraph invariant under similarities of Rn. In every forcing extension of
the choiceless Solovay model by a cofinally m, 2-balanced Suslin forcing, every
non-meager subset of Rn contains all vertices of an equilateral triangle.

Proof. Let κ be an inaccessible cardinal. Let P be a Suslin forcing which is
m, 2-balanced cofinally in κ. Let W be a choiceless Solovay model derived from
κ. Work in W . Suppose that p ∈ P is a condition and τ is a P -name for a non-
null subset of Rn. Both p, τ are definable from a ground model parameter and
an additional parameter z ∈ 2ω. I must find a hyperedge in Γ and a condition
in P stronger than p which forces the hyperedge to be a subset of τ . Let V [K]
be an intermediate extension obtained by a poset of cardinality smaller than κ
such that z ∈ V [K] and P is m, 2-balanced in V [K]. Work in V [K].

Let p̄ ≤ p be an m, 2-balanced virtual condition in the poset P . Let Q be
the usual Cohen poset of nonempty open subsets of X ordered by inclusion,
adding an element ẋgen ∈ X. There must be a condition O ∈ Q, a poset R of
cardinality smaller than κ and a Q × R-name σ for a condition in P stronger
than p̄ such that O  R  Coll(ω,< κ)  σ  ẋgen ∈ τ . Otherwise, p̄ would
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force τ to be disjoint from the co-meager set of all elements of X Cohen generic
over V [K], However, the complement of this Borel set has λ-mass zero, and this
would contradict the initial assumption on the name τ .

Now, use the invariance of the hypergraph Γ under similarities to see that
[O]m ∩ Γ is a nonempty set and therefore a condition in the poset PΓ. Work in
the model W . Find a hyperedge 〈xi : i ∈ m〉 ∈ Om∩Γ generic over V [K] for the
poset Q. By Proposition 2.3, each of the points xi ∈ O is Q-generic over V [K],
and for distinct indices i, j ∈ m, the models V [xi], V [xj ] are mutually generic.
Let Hi ⊂ R for i ∈ m be mutually generic filters over the model V [K][x0, x1].
The models V [K][xi][Hi] for i ∈ m are pairwise mutually generic extensions
of V [K]. For each i ∈ m let pi = σ/xi, Hi ≤ p̄. By the balance assumption
on the virtual condition p̄, the conditions pi for i ∈ m have a common lower
bound in the poset P . By the forcing theorem applied in the respective models
V [K][xi][Hi], this common lower bound forces {xi : i ∈ m} ⊂ τ as desired.

3 The coloring poset

To prove Theorem 1.2, I must produce a suitable Suslin poset adding a total
Γn-coloring. The definition of the poset uses, as a technical parameter, a Borel
ideal I on ω which contains all singletons which is not generated by countably
many sets. Further properties of the ideal I seem to be irrelevant; the summable
ideal will do.

Definition 3.1. Let n ≥ 2 be a number. The poset Pn consists of partial
functions p : Rn → ω such that there is a countable real closed subfield supp(p) ⊂
R such that dom(p) = supp(p)n, and p is a Γn-coloring. The ordering is defined
by p1 ≤ p0 if

1. p0 ⊂ p1;

2. for every hypersphere S ⊂ Rn visible in supp(p0) and any two points
x, y ∈ dom(p1 \ p0), if x, y are opposite points on S then p1(x) 6= p1(y);

3. for any two parallel hyperplanes P,Q ⊂ Rn visible in supp(p0) and any
two points x, y ∈ dom(p1 \p0), if x, y are opposite points on the respective
hyperplanes P,Q then p1(x) 6= p1(y);

4. if a ⊂ supp(p1) is a finite set, then p′′1δ(p0, p1, a) ∈ I where δ(p0, p1, a) =
{x ∈ dom(p1 \ p0) : x is algebraic over supp(p0) ∪ a}.

Proposition 3.2. ≤ is a σ-closed transitive relation.

Proof. For the transitivity, suppose that r ≤ r ≤ p are conditions in the poset
Pn; I must show that r ≤ p. Checking the items of Definition 3.1, (1) is obvious.
For (2), suppose that S is a hypersphere visible in p and x, y are opposite points
on it in dom(r \ p). By the closure properties of dom(q), either both x, y belong
to dom(q) or both do not. In the former case (2) is confirmed by an application
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of (2) of q ≤ p, in the latter case (2) is confirmed by an application of (2) of r ≤ q.
(3) is verified in a similar way. For (4), suppose that a ⊂ supp(r) is a finite set.
Let b ⊂ supp(q) be an inclusion maximal set of points algebraic over supp(p)∪a
which is algebraically independent. Since finite algebraically independent sets
over supp(p) form a matroid, it must be the case that |b| ≤ |a| holds. Note that
δ(p, r, a) ⊆ δ(p, q, b) ∪ δ(q, r, a) and r′′δ(p, r, a) ⊆ q′′δ(p, q, b) ∪ r′′(q, r, a). Thus,
the set r′′δ(p, r, a) belongs to I, since it is covered by two sets which are in I by
an application of (4) of q ≤ p and r ≤ q.

For the σ-closure, let 〈pi : i ∈ ω〉 be a descending sequence of conditions
in Pn, and let q =

⋃
i pi; I will show that q is a common lower bound of the

sequence. Let i ∈ ω be arbitrary and work to show q ≤ pi. For brevity,
I deal only with item (4) of Definition 3.1. Let a ⊂ supp(q) be a finite
set. There must be j ∈ ω greater than i such that a ⊂ supp(pj). By the
closure properties of dom(pj), it follows that δ(pi, q, a) = δ(pi, pj , a). Thus,
q′′δ(pi, q, a) = p′′j δ(pi, pj , a) and the latter set belongs to I by an application of
(4) of pj ≤ pi.

Further analysis of the poset Pn depends on a characterization of compatibility
of conditions.

Proposition 3.3. Let p0, p1 ∈ Pn be conditions. The following are equivalent:

1. p0, p1 are compatible;

2. for every point x0 ∈ Rn there is a common lower bound of p0, p1 containing
x in its domain;

3. the conjunction of the following:

(a) p0 ∪ p1 is a function and a Γn-coloring;

(b) whenever S is a hypersphere visible from supp(p0) and x, y ∈ dom(p1\
p0) are opposite points on S, then p1(x) 6= p1(y);

(c) whenever P,Q are parallel hyperplanes visible from supp(p0) and
x, y ∈ dom(p1 \ p0) are opposite points on them, then p1(x) 6= p1(y);

(d) for every finite set a ⊂ supp(p1), p′′1δ(p0, p1, a) ∈ I;

(e) items above with subscripts 0, 1 interchanged.

Proof. (2) implies (1), which in turn implies (3) by Definition 3.1. The hard
implication is the remaining one: (3) implies (2). Suppose that all items in
(3) obtain and x0 ∈ Rn is a point. To find a common lower bound of p0, p1

which contains x0 in its domain, let F ⊂ R be a countable real closed field
containing x0 as an element and supp(p0), supp(p1) as subsets. The common
lower bound q will be constructed in such a way that dom(q) = Fn. Write
d = Fn\(dom(p0)∪dom(p1). For every point x ∈ d and every i ∈ 2, let α(x, i) =
{y ∈ dom(pi) \ dom(p1−i) : y and x are mutually algebraic over supp(p1−i).

Claim 3.4. For each x ∈ d and i ∈ 2, the set p′′i α(x, i) belongs to the ideal I.
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Proof. For definiteness set i = 1. The set α(x, 1) is a subset of δ(p0, p1, a) where
a is the set of coordinates of any point in α(x, 1). The claim then follows from
assumption (3)(d).

Now, use the claim to find a set b ⊂ ω in the ideal I which cannot be covered
by finitely many elements of the form p′′i α(x, i) for x ∈ d and i ∈ 2 and finitely
many singletons. Let q : Fn → ω be a function extending p0∪p1 such that q � d
is an injection and for every x ∈ d, q(x) ∈ b \ (p′′0α(x, 0) ∪ p′′1α(x, 1)). Such a
function exists by the choice of the set b. I will show that q ∈ Pn and q is a
lower bound of p0, p1.

To see that q ∈ Pn, let R ⊂ dom(q) be a rectangle and work to show that R
is not monochromatic. The treatment splits into cases.
Case 1. R ⊂ dom(p0)∪dom(p1). By the closure properties of the sets dom(p0)
and dom(p1), there are two subcases.
Case 1.1. R is entirely contained in one of the two conditions. Then R is not
monochromatic as both p0, p1 are Γn-colorings.
Case 1.2. There are exactly two vertices of R in dom(p0 \ p1) and exactly two
vertices of R in dom(p1 \ p0). There are again two subcases.
Case 1.2.1 If the two vertices in dom(p0 \ p1) are opposite on the rectangle
R, then they determine a hypersphere visible from supp(p0) on which the other
two vertices are opposite as well. Then the other two vertices receive distinct
p1-colors by assumption (3)(b).
Case 1.2.2. If the two vertices in dom(p0 \ p1) are next to each other on the
rectangle R, then they determine parallel hyperplanes visible from supp(p0) on
which the other two vertices are opposite as well. Then the other two vertices
receive distinct p1-colors by assumption (3)(c).
Case 2. R contains exactly one vertex in the set d; call it x. By the closure
properties of the sets dom(p0) and dom(p1), the remaining three vertices of
R cannot all belong to the same condition. Thus, there must be two vertices
contained in (say) dom(p0) and one vertex, call it y, in dom(p1 \ p0). Then
y, x are mutually algebraic over dom(p0). Thus y ∈ α(x, 1) and q(x) 6= q(y) by
the initial assumptions on the function q. In conclusion, the rectangle R is not
monochromatic.
Case 3. R contains more than one vertex in the set d. Then R is not monochro-
matic as q � d is an injection.

This shows that q ∈ Pn holds. I must show that q ≤ p1; the proof of q ≤ p0 is
symmetric. To verify Definition 3.1 (2), suppose that S is a hypersphere visible
in dom(p0) and x, y ∈ dom(q \ p0) are opposite points on S. If x, y ∈ dom(p1)
then item (3)(b) shows that q(x) 6= q(y). If x ∈ d and y ∈ dom(p0) (or vice
versa) then y ∈ α(x, 0) and q(x) 6= q(y) by the choice of the color q(x). Finally,
if x, y ∈ d then q(x) 6= q(y) as q � d is an injection.

Definition 3.1 (3) is verified in the same way. For item (4) of Definition 3.1,
let a ⊂ F be a finite set. Let a′ ⊂ supp(p0) be a maximal set in supp(p0) which
is algebraically free over supp(p1). Since algebraically free sets over supp(p0)
form a matroid, |a′| ≤ |a| holds, in particular a′ is finite. Now, δ(q, p1, a) ⊂
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δ(p1, p0, a
′) ∪ b, the first set on the right belongs to I by assumption (3)(d), so

the whole union belongs to I as required.

Corollary 3.5. Pn is a Suslin poset.

Proof. It is clear from Definition 3.1 that the underlying set and the ordering
of the poset Pn are Borel. Proposition 3.3 shows that the (in)compatibility
relation is Borel as well.

Corollary 3.6. Pn forces the union of the generic filter to be a total Γn-coloring.

Proof. By a genericity argument, it is enough to show that for every condition
p ∈ Pn and every point x0 ∈ Rn there is a stronger condition containing x0 in
its domain. This follows from Proposition 3.3 with p = p0 = p1.

It is time for the balance proofs. They use the following fact, proved in greater
generality in [8].

Fact 3.7. Let n ≥ 2 be a number. Let V [G0], V [G1] be mutually generic
extensions.

1. Let C ⊂ Rn be an affine set definable from parameters in V [G0]. Suppose
that x1 ∈ V [G1] ∩ Rn is a point in C. Then there is an affine set D ⊆ C
definable in parameters from V such that x1 ∈ D;

2. same as (1) except for algebraic sets;

3. same as (1) except for semialgebraic sets.

In addition, if a ⊂ R∩V [G1] is a finite set and r ∈ R∩V [G1] is a real algebraic
over (R ∩ V [G0]) ∪ a, then r is algebraic over (R ∩ V ) ∪ a.

Theorem 3.8. Let n ≥ 2 be a number. In the poset Pn,

1. for every total Γn-coloring c : Rn → ω, the pair 〈Coll(ω,R), č〉 is balanced;

2. every balanced pair is equivalent to one as in item (1);

3. distinct colorings yield inequivalent balanced pairs.

In particular, the poset Pn is balanced if and only if the Continuum Hypothesis
holds.

Proof. For (1), let V [G0], V [G1] be mutually generic extensions and p0, p1 ≤ c
be conditions in Pn in the corresponding extensions; I must show that p0, p1 are
compatible. This is done using Proposition 3.3.

For item (3)(a), it is clear that V [G0] ∩ V [G1] = V , therefore p0 ∪ p1 is a
function. To show that it is a Γn-coloring, suppose that R ⊂ dom(p0 ∪ p1) is a
rectangle. By the closure properties of dom(p0) and dom(p1), R is either wholly
included in one of the conditions, or it contains two points in dom(p0 \ V ) and
two points in dom(p1 \V ). In the former case R is not monochromatic as p0, p1
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are Γn-coloring. In the latter case, there are two subcases. If the two points in
dom(p0) ∩ R are opposite on the rectangle R, then they are on a hypersphere
which is visible in both supp(p0) and supp(p1), therefore in the ground model
and they receive distinct colors as p0 ≤ c. If the two points in dom(p0) ∩R are
adjacent on the rectangle R, then they are on parallel hyperplanes which are
visible in both supp(p0) and supp(p1), so visible in V and they receive distinct
colors as p0 ≤ c.

Items (3)(b) and (c) are verified in a similar way. For item (3)(d), use
Fact 3.7 to show that for any finite set a ⊂ supp(p1), δ(p0, p1, a) = δ(c, p1, a).
Then, the p1-image of this set belongs to the ideal I by Definition 3.1(4) applied
to p1 ≤ c.

For (2), let 〈Q, σ〉 be a balanced pair. Strengthening the poset Q and/or the
name σ, I may assume that Q  σ ∈ Pn is a condition and Rn ∩ V ⊂ dom(σ).
A balance argument shows that for every point x ∈ Rn, there must be a specific
number c(x) ∈ ω such that Q  σ(x̌) = c(x). It is clear that the function c is a
total Γn-coloring. By [4, Proposition 5.2.6], it is enough to show that Q  σ ≤ č.
Suppose towards a contradiction that this fails; then, there has to be a condition
q ∈ Q which forces a specific item of Definition 3.1 to fail. Let G0, G1 ⊂ be
mutually generic filters containing the condition q, and let p0 = σ/G0 and
p1 = σ/G1. It is clear that the corresponding item of Proposition 3.3(3) has to
fail. In conclusion, the conditions p0, p1 are incompatible, violating the balance
assumption on the pair 〈Q, σ〉.

(3) is immediate. For the last sentence, if CH fails, then there is no total
Γn-coloring by the result of [2] and balance fails by item (2). On the other hand,
if CH holds and p ∈ Pn is a condition, choose an enumeration 〈xα : α ∈ ω1〉 of
Rn and by recursion on α ∈ ω1 build conditions pα ∈ Pn so that

• p = p0 ≥ p1 ≥ . . . ;

• xα ∈ dom(pα+1);

• pα =
⋃
β∈α pβ for limit ordinals α.

The successor step is possible by Corollary 3.6 and the limit step by Proposi-
tion 3.2. In the end, let c =

⋃
α pα and observe that c is a total Γn-coloring and

c ≤ p.

Theorem 3.9. Every balanced virtual condition in Pn is 3, 2-balanced.

The fine details of this proof are the reason behind the rather mysterious Defi-
nition 3.1.

Proof. Let c : Rn → ω be a total Γn-coloring. Let V [Gi] for i ∈ 3 be pairwise
mutually generic extensions. Suppose that pi ≤ c is a condition in Pn for each
i ∈ 3; I must find a common lower bound of all pi for i ∈ 3.

Work in the model V [Gi : i ∈ 3]. Let F ⊂ R be a countable real closed
field containing supp(pi) for i ∈ 3. I will construct a lower bound q such that
F = supp(q). Write d = Fn\

⋃
i dom(pi). For each point x ∈ d and for each pair
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i, j ∈ 3 of distinct indices, define sets α(x, i, j), β(x, i, j) and γ(x, i, j) ⊂ dom(pi)
as follows:

• α(x, i, j) = {y ∈ dom(pi \ c) : for some hypersphere S ⊂ Rn visible in
supp(pj) such that x, y are opposite points on S};

• β(x, i, j) = {y ∈ dom(pi \ c) : there are parallel hyperplanes P,Q ⊂ Rn
visible in supp(pj) such that x, y are opposite points on P,Q respectively};

• γ(x, i, j) = {y ∈ dom(pi \ c) : there are points xj ∈ dom(pj \ c) and
xk ∈ dom(pk \ c) such that x, y, xj , xk are four vertices of a rectangle
listed in a clockwise or counterclockwise order}. Here k ∈ 3 is the index
distinct from i and j.

Claim 3.10. There is a finite set a ⊂ supp(pi) such that α(x, i, j) consists of
points algebraic over (R ∩ V ) ∪ a.

Proof. This is clear if α(x, i, j) = 0. Otherwise, let y ∈ α(x, i, j) be any point
and argue that all other points in α(x, i, j) are algebraic over (R∩V )∪y. To see
this, suppose that z ∈ α(x, i, j) is any other point. Let Sy, Sz be hyperspheres
visible in supp(pj) such that x is opposite of y on Sy and opposite of z on Sz.
It follows that z is algebraic over supp(pj) ∪ y: one first derives x from y and
then z from x. By Fact 3.7 z is algebraic over (R ∩ V ) ∪ y as desired.

Claim 3.11. There is a finite set a ⊂ supp(pi) such that β(x, i, j) consists of
points algebraic over (R ∩ V ) ∪ a.

Proof. This is parallel to the previous argument.

Claim 3.12. There is a finite set a ⊂ supp(pi) such that γ(x, i, j) consists of
points algebraic over (R ∩ V ) ∪ a.

Proof. This is the heart of the whole construction and the reason why item (4)
appears in Definition 3.1. For each point y ∈ γ(x, i, j) choose points xj(y) ∈
dom(pk \ c) and xk ∈ dom(pk \ c) witnessing the membership relation. Let
H(y) ⊂ Rn be the hyperplane passing through y and perpendicular to the
vector y−xj(y); thus, x ∈ H(y). Write H =

⋂
y∈γ(x,i,j)H(y). Let a ⊂ γ(x, i, j)

be a set of minimum cardinality such that H =
⋂
y∈aH(y); the set a is finite. I

will show that every point y ∈ γ(x, i, j) is algebraic over (R ∩ V ) ∪ a. This will
prove the claim.

Let y ∈ γ(x, i, j) be an arbitrary point. Consider the set A = {u ∈
(Rn)m+1 : ∀z ∈ Rn (∀l ∈ m (xj(a(l)) − u(l)) · (z − u(l)) = 0) → (xj(y) −
u(m)) · (z−u(l)) = 0}. The set A is semi-algebraic in parameters from supp(pj)
and contains the tuple aay. By Fact 3.7 and the mutual genericity assumption
between V [Gi] and V [Gj ], there is a set B ⊂ A semialgebraic in parameters
from R ∩ V such that aay ∈ B. Note that Ba is a subset of the hypersphere of
which the segment between xj(y) and x, and also the segment between xk(y)
and y, is a diameter. Let C = {u ∈ B : u(m) is the farthest point of Bu�m from
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xi(y)}. This is a semi-algebraic set in parameters from supp(pk). By Fact 3.7
and the mutual genericity assumption between V [Gi] and V [Gk], there is a semi-
algebraic set D ⊆ C definable from parameters in R ∩ V such that aay ∈ D.
Clearly, Da = {y}. It follows that y is algebraic over (R∩V )∪ a as desired.

Now, define the set f(x) ⊂ ω of forbidden colors by setting it to the union of
p′′i (α(x, i, j) ∪ β(x, i, j) ∪ γ(x, i, j) for all choices of distinct indices i, j ∈ 3. By
the claims and Definition 3.1(4) applied to pi ≤ c, f(x) ∈ I. Let b ⊂ ω be a set
in the ideal I which cannot be covered by finitely many sets of the form f(x)
for x ∈ d, and finitely many singletons. Let q : Fn → ω be any map extending⋃
i pi and such that q � d is an injection such that q(x) ∈ b\f(x) holds for every

x ∈ d. I claim that q is the requested common lower bound of the conditions pi
for i ∈ 3.

Claim 3.13. q is a Γn-coloring.

Proof. Let R ⊂ Fn be a rectangle; I must show that q is not constant on it.
The proof breaks into numerous cases and subcases.
Case 1. R contains no elements of the set d. Let a ⊂ 3 be an inclusion minimal
set such that R ⊂

⋃
i∈a dom(pi).

Case 1.1. |a| = 1. Here, R is not monochromatic because pi is a Γn-coloring
where i is the unique element of a.
Case 1.2. |a| = 2, containing indices i, j ∈ 3. The closure properties of the
domains of pi and pj imply that each set dom(pi \ c) and dom(pj \ c) contains
exactly two points of R.
Case 1.2.1. The two points in dom(pi \ C) ∩ R are adjacent in R. Then the
hyperplanes containing the two respective points and perpendicular to their con-
nector are visible in both V [gi] and V [Gj ], so in V . The two points are opposite
on these planes and therefore they receive distinct pi colors by Definition 3.1(3).
Therefore, R is not monochromatic.
Case 1.2.2. The two points in dom(pi\C)∩R are opposite in R. Then both the
center of the rectangle R and the real number which is half of the length of the
rectangle diagonal belong to both V [Gi] and V [Gj ], so to V . The hypersphere
S they determine is visible from V , and the two points of dom(pi \ C) ∩ R are
opposite on S. Applying Definition 3.1(2) to pi ≤ c, it is clear that the two
points receive distinct pi colors and R is not monochromatic.
Case 1.3. |a| = 3. Then there must be index i ∈ 3 such that dom(pi \ c)
contains exactly two points of R and dom(pj \ c) contains exactly one point of
R for each index j 6= i. I will show that this case cannot occur regardless of the
colors on the rectangle R. For an index j 6= i, write xj for the unique point in
R ∩ dom(pj \ c).
Case 1.3.1. The two points in dom(pi \C)∩R are adjacent in R. Consider the
two hyperplanes Qj , Qk containing these two points respectively and perpendic-
ular to their connecting segment, indexed by j, k 6= i. Reindexing if necessary,
xj ∈ Qj and xk ∈ Qk holds. By Fact 3.7, there must be algebraic (even affine)
sets Q′j ⊆ Qj and Q′k ⊆ Qk visible from the ground model and still containing
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xj and xk. This means that xk can be recovered in V [Gj ] as the closest point
to xj in Q′k. This is impossible as V [Gj ] ∩ V [Gk] = V .
Case 1.3.2. The two points in dom(pi \C)∩R are opposite in R. Consider the
hypersphere S in which these two points are opposite. S then contains xj and
xk and these two points are opposite in S. By Fact 3.7, there must be algebraic
sets Sj ⊆ S and Sk ⊆ S visible from the ground model and still containing xj
and xk. This means that xk can be recovered in V [Gj ] as the farthest point to
xj in Sk. This is impossible as V [Gj ] ∩ V [Gk] = V .
Case 2. R contains exactly one point in the set d; call this unique point x. Let
a ⊂ 3 be an inclusion minimal set such that R \ {x} ⊂

⋃
i∈a dom(pi).

Case 2.1. |a| = 1. This cannot occur since dom(pi) would contain x with the
other three vertices of R, where i ∈ 3 is the only element of a.
Case 2.2. |a| = 2, containing indices i, j ∈ 3. Here, for one of the indices (say
j) dom(pj) has to contain two elements of R while dom(pi \c) contains just one;
denote the latter point by xi.
Case 2.2.1. The points xi and x are opposite on the rectangle R. Then
xi ∈ α(x, i, j) as the hypersphere on which xi, x are opposite points is the same
as the one on which the other two points are opposite, and therefore is visible
in supp(pj). The choice of the map q shows that q(x) 6= pi(xi), so R is not
monochromatic.
Case 2.2.1. The points xi and x are opposite on the rectangle R. Then
xi ∈ β(x, i, j) as xi, x are opposite points on the hyperplanes passing through
the other two points and perpendicular to their connecting segment, and these
are visible in supp(pj). The choice of the map q shows that q(x) 6= pi(xi), so R
is not monochromatic.
Case 2.3. |a| = 3. For each index i ∈ 3 let xi ∈ R be the unique point in
dom(pi \ c). Let i, j, k ∈ 3 be indices such that the sequence x, xi, xj , xk goes
around the rectangle R. Then xi ∈ γ(x, i, j) holds. The choice of the map q
shows that q(x) 6= pi(xi), so R is not monochromatic.
Case 3. R contains more than one point in the set d. Then R is not monochro-
matic as d � d is an injection.

Finally, let i ∈ 3 be an index; I must prove that q ≤ pi holds. It is clear that
pi ⊂ q holds. The following claims verify other items of Definition 3.1,

Claim 3.14. If S ⊂ Rn is a hypersphere visible in supp(pi) and x, y ∈ dom(q \
pi) are opposite points on it, then q(x) 6= q(y).

Proof. The arguments splits into cases.
Case 1. If x, y both belong to the set d, then q(x) 6= q(y) as q � d is an injection.
Case 2. If x ∈ d and y /∈ d, let j ∈ 3 be an index distinct from i such that
y ∈ dom(pj \ c). Then, y ∈ α(x, j, i) holds and therefore q(x) 6= pj(y) as
q(x) /∈ p′′jα(x, j, i).
Case 3. If neither of the points x, y belongs to d, then there are two subcases.
Case 3.1. There is j ∈ 3 such that both x, y belong to dom(pj) \ c. In such a
case, the hypersphere S is also visible in supp(pj). By the mutual genericity of
the models V [Gi] and V [Gj ], the hypersphere S is visible in the ground model.
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It follows that q(x) = pj(x) 6= pj(y) = q(y) by Definition 3.1 (2) applied to
pj ≤ c.
Case 3.2. x ∈ dom(pj \ c) and y ∈ dom(pk \ c) for distinct indices j, k. By
the mutual genericity of the models V [Gi] and V [Gj ] and Fact 3.7, there is an
algebraic set T ⊂ S coded in the ground model such that x ∈ T . Then x can
be recovered in V [Gk] as the point on T farthest away from y, contradicting the
fact that V [Gj ] ∩ V [Gk] = 0.

Claim 3.15. If P,Q ⊂ Rn are parallel hyperplanes visible in supp(pi) and
x, y ∈ dom(q \ pi) are opposite points on them, then q(x) 6= q(y).

Proof. The argument is similar to that for Claim 3.14.

Claim 3.16. If a ⊂ Fn is a finite set, then q′′δ(pi, q, a) ∈ I.

Proof. For each index j ∈ 3 distinct from i, let aj ⊂ δ(pi, q, a) ∩ dom(pj) be an
inclusion-maximal set which is algebraically free over supp(pi). Since sets al-
gebraically free over supp(pi) form a matroid, |aj | ≤ |a|. By Fact 3.7 δ(pi, q, a)∩
dom(pj) = δ(c, pj , aj) holds. This means that δ(pi, q, a) = δ(c, pj , aj)∪δ(c, pk, ak)∪
d where j, k ∈ 3 are the two indices distinct from i. Now, p′′j (c, pj , aj) ∈ I by
Definition 3.1(4) applied to pj ≤ c, p′′k(c, pk, aj) ∈ I by Definition 3.1(4) applied
to pk ≤ c, and q′′b ∈ I as this set is a subset of b. As the ideal I is closed under
unions and subsets, q′′δ(pi, q, a) ∈ I as desired.

This concludes the proof of the proposition.

Finally, I can complete the proof of Theorem 1.2. Let n ≥ 2 be a number. Let
κ be an inaccessible cardinal. Let W be the choiceless Solovay model derived
from κ. Let Pn be the Suslin poset of Definition 3.1, and let G ⊂ Pn be a filter
generic over W . W [G] is a model of ZF+DC since it is a σ-closed extension
of a model of ZF+DC. I claim that in W [G], the chromatic number of Γn
is countable while the chromatic number of ∆ is not. The former assertion
follows immediately from Corollary 3.6. The latter assertion follows from the
conjunction of Theorem 2.5 and Theorem 3.9. The proof is complete.
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[4] Paul Larson and Jindřich Zapletal. Geometric set theory. AMS Surveys and
Monographs. American Mathematical Society, Providence, 2020.

12



[5] James H. Schmerl. Avoidable algebraic subsets of Euclidean space. Trans.
Amer. Math. Soc., 352:2479–2489, 1999.

[6] Jindrich Zapletal. Coloring the distance graphs in three dimensions. 2021.
submitted.

[7] Jindrich Zapletal. Krull dimension in set theory. 2021. submitted.

[8] Jindrich Zapletal. Noetherian spaces in choiceless set theory. 2021. in
preparation.

13


