COLORING RIGHT TRIANGLES

Jindřich Zapletal University of Florida

Σ_{1}^{2} sentences.

Sentences of the form $\exists A \subset X \phi(A)$ where X is a Polish space and ϕ quantifies only over natural numbers and elements of X. Maybe true, maybe false, provable in ZF or ZFC or $\mathrm{ZFC}+\mathrm{CH}$.

- If G is a Borel graph on X : the statement G has countable chromatic number;
- If X is a vector space over a countable field: X has a basis;
- the Continuum Hypothesis.

Chromatic numbers of hypergraphs.

A hypergraph Γ on X is just a subset of $[X]^{k}$ where $k \in \omega$. It has countable chromatic number if there is a decomposition $X=\cup_{n} A_{n}$ such that no A_{n} contains a hyperedge.

- the graph of points of rational Euclidean distance in \mathbb{R}^{n};
- the hypergraph of equilateral triangles in \mathbb{R}^{n};
- the hypergraph of all squares in \mathbb{R}^{n};
- the hypergraph of all right triangles in \mathbb{R}^{n}.

All algebraic. Countable chromatic number in ZFC except the last item.

Classifying hypergraph chromatic numbers.

Theorem. (Schmerl) There are computable sets $B_{n}: n \geq 1, C, D$ such that

- $G \in B_{n}$ iff (ZFC proves G has countable chromatic number iff $2^{\aleph_{0}} \leq \aleph_{n}$;
- $G \in C$ iff ZFC proves G has countable chromatic number;
- $G \in D$ iff ZFC proves G does not have countable chromatic number;
- $\cup_{n} B_{n} \cup C \cup D=$ all algebraic hypergraphs.

Task. Find similar classification for ZF+DC. MUCH more complicated!

Technology.

(the Geometric Set Theory book.) Given hypergraphs G_{0}, G_{1}, attempt to find a balanced generic extension of the Solovay model in which G_{0} has countable chromatic number and G_{1} does not.

Boils down to comparison of combi/topo properties of G_{0}, G_{1}. Sometimes impossible.

Theorem. (ZF) If the graph of right angle triangles in \mathbb{R}^{2} has countable chromatic number then there is a linear pre-order of the reals with all proper initial segments countable.

Corollary. No way of getting balanced generic extensions where the right angle hypergraph has countable chromatic number.

Proof of theorem: basic tool.

Given $A \subset 2^{\omega}$ (or any other Polish space) and $x \in 2^{\omega}$, form $H O D_{A, x}$. Define $x \leq y$ if $x \in$ $H O D_{A, y}$ (a preorder).

Fact. If A is a Hamel basis of \mathbb{R} over \mathbb{Q} then \leq is wellfounded.

Fact. If A is a coloring for the rectangle graph, then \leq is well-founded of height ω_{1}.

Fact. If A is a coloring for the right triangles, then \leq is a pre-well-ordering of height ω_{1}.

Aside.

$H O D_{A, x}$ is the class of all sets z such that z and every element of the transitive closure of z has a definition from ordinal parameters and additional parameters A, x.
$H O D_{A, x}$ is a model of ZFC. It contains all ordinals, x, and $A \cap H O D_{A, x}$ (the shadow of A).

Shadow of a coloring is a coloring, shadow of an ultrafilter is an ultrafilter, etc.

Proof of theorem: linearity.

Let c be the coloring of the right triangle hypergraph.

To prove linearity of \leq, suppose towards a contradiction that x_{0}, x_{1} are mutually undefinable. Let L_{0} be the vertical line in the plane with coordinate x_{0}, let L_{1} be the horizontal line in the plane with coordinate x_{1}.

Let $n=c\left(x_{0}, x_{1}\right)$. This is not the only point on L_{0} with color n, otherwise x_{1} is definable from x_{0}. Same for L_{1}. So there is a monochromatic right triangle of color n.

Proof of theorem: well-foundedness.

We will show that $H O D_{c, x_{0}}=H O D_{c, x_{1}}$ if and only if the two models have the same ω_{1}.

Suppose towards a contradiction that $x_{0}<x_{1}$ and the two models have the same ω_{1}. Work in $H O D_{c, x_{1}}$. Find a countable subset of the line L_{1} harvesting all possible colors. Find a point $x_{0}^{\prime} \in H O D_{c, x_{0}}$ which is not on this countable set. Then proceed as previously.

Proof of theorem: AC case.

We prove that in ZFC, existence of the coloring implies CH. This has been proved by Erdős and Komjáth earlier.

Suppose towards a contradiction that CH fails. Let M_{0} be an elementary submodel of size \aleph_{1} containing c as element, let $x_{0} \in \mathbb{R} \backslash M_{0}$ be any element. Let M_{1} be a countable elementary submodel containing M_{0}, x, c as elements, let $x_{1} \in M_{1} \backslash M_{0}$ be any element.

Now proceed as previously.

Proof of theorem: wrap-up.

Case 1. There is x such that $H O D_{c, x}$ has the same ω_{1} as V. Then it contains all reals, and it satisfies CH , giving a well-ordering of reals of ordertype ω_{1}.

Case 2. If Case 1 fails, then all models $H O D_{c, x}$ have countable ω_{1}. Since they satisfy $C H$, they contain only countably many reals each.

In both cases, the theorem follows.

