COLORING RIGHT TRIANGLES

Jindřich Zapletal
University of Florida
Σ^2_1 sentences.

Sentences of the form $\exists A \subset X \phi(A)$ where X is a Polish space and ϕ quantifies only over natural numbers and elements of X. Maybe true, maybe false, provable in ZF or ZFC or ZFC+CH.

- If G is a Borel graph on X: the statement G has countable chromatic number;

- If X is a vector space over a countable field: X has a basis;

- the Continuum Hypothesis.
Chromatic numbers of hypergraphs.

A hypergraph Γ on X is just a subset of $[X]^k$ where $k \in \omega$. It has countable chromatic number if there is a decomposition $X = \bigcup_n A_n$ such that no A_n contains a hyperedge.

- the graph of points of rational Euclidean distance in \mathbb{R}^n;
- the hypergraph of equilateral triangles in \mathbb{R}^n;
- the hypergraph of all squares in \mathbb{R}^n;
- the hypergraph of all right triangles in \mathbb{R}^n.

All algebraic. Countable chromatic number in ZFC except the last item.
Classifying hypergraph chromatic numbers.

Theorem. (Schmerl) There are computable sets $B_n: n \geq 1, C, D$ such that

- $G \in B_n$ iff (ZFC proves G has countable chromatic number iff $2^{\aleph_0} \leq \aleph_n$);

- $G \in C$ iff ZFC proves G has countable chromatic number;

- $G \in D$ iff ZFC proves G does not have countable chromatic number;

- $\bigcup_n B_n \cup C \cup D =$ all algebraic hypergraphs.

Task. Find similar classification for ZF+DC. MUCH more complicated!
(the Geometric Set Theory book.) Given hypergraphs G_0, G_1, attempt to find a balanced generic extension of the Solovay model in which G_0 has countable chromatic number and G_1 does not.

Boils down to comparison of combi/topo properties of G_0, G_1. Sometimes impossible.

Theorem. (ZF) If the graph of right angle triangles in \mathbb{R}^2 has countable chromatic number then there is a linear pre-order of the reals with all proper initial segments countable.

Corollary. No way of getting balanced generic extensions where the right angle hypergraph has countable chromatic number.
Proof of theorem: basic tool.

Given $A \subset 2^\omega$ (or any other Polish space) and $x \in 2^\omega$, form $HOD_{A,x}$. Define $x \leq y$ if $x \in HOD_{A,y}$ (a preorder).

Fact. If A is a Hamel basis of \mathbb{R} over \mathbb{Q} then \leq is wellfounded.

Fact. If A is a coloring for the rectangle graph, then \leq is well-founded of height ω_1.

Fact. If A is a coloring for the right triangles, then \leq is a pre-well-ordering of height ω_1.
Aside.

$\text{HOD}_{A,x}$ is the class of all sets z such that z and every element of the transitive closure of z has a definition from ordinal parameters and additional parameters A, x.

$\text{HOD}_{A,x}$ is a model of ZFC. It contains all ordinals, x, and $A \cap \text{HOD}_{A,x}$ (the shadow of A).

Shadow of a coloring is a coloring, shadow of an ultrafilter is an ultrafilter, etc.
Proof of theorem: linearity.

Let c be the coloring of the right triangle hypergraph.

To prove linearity of \leq, suppose towards a contradiction that x_0, x_1 are mutually undefinable. Let L_0 be the vertical line in the plane with coordinate x_0, let L_1 be the horizontal line in the plane with coordinate x_1.

Let $n = c(x_0, x_1)$. This is not the only point on L_0 with color n, otherwise x_1 is definable from x_0. Same for L_1. So there is a monochromatic right triangle of color n.
Proof of theorem: well-foundedness.

We will show that $HOD_{c,x_0} = HOD_{c,x_1}$ if and only if the two models have the same ω_1.

Suppose towards a contradiction that $x_0 < x_1$ and the two models have the same ω_1. Work in HOD_{c,x_1}. Find a countable subset of the line L_1 harvesting all possible colors. Find a point $x'_0 \in HOD_{c,x_0}$ which is not on this countable set. Then proceed as previously.
Proof of theorem: AC case.

We prove that in ZFC, existence of the coloring implies CH. This has been proved by Erdős and Komjáth earlier.

Suppose towards a contradiction that CH fails. Let M_0 be an elementary submodel of size \aleph_1 containing c as element, let $x_0 \in \mathbb{R} \setminus M_0$ be any element. Let M_1 be a countable elementary submodel containing M_0, x, c as elements, let $x_1 \in M_1 \setminus M_0$ be any element.

Now proceed as previously.
Proof of theorem: wrap-up.

Case 1. There is \(x \) such that \(\text{HOD}_{c,x} \) has the same \(\omega_1 \) as \(V \). Then it contains all reals, and it satisfies CH, giving a well-ordering of reals of ordertype \(\omega_1 \).

Case 2. If Case 1 fails, then all models \(\text{HOD}_{c,x} \) have countable \(\omega_1 \). Since they satisfy CH, they contain only countably many reals each.

In both cases, the theorem follows.