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Abstract

It is consistent relative to an inaccessible cardinal that ZF+DC holds,
the hypergraph of equilateral triangles in Euclidean plane has countable
chromatic number, while there is no Vitali set.

1 Introduction

Classification of analytic graphs and hypergraphs from various points of view is
a subject matter frequently discussed in descriptive set theory and descriptive
combinatorics. Geometric set theory adds its own angle: independence results
in ZF+DC choiceless set theory regarding the existence of various structures
(e.g., colorings or perfect matchings) related to analytic (hyper)graphs. One
can consider for example the following broad question:

Question 1.1. For which analytic hypergraphs Γ on Polish spaces is it con-
sistent with ZF+DC that Γ has countable chromatic number and no Vitali set
exists?

Note that existence of Vitali set is equivalent in ZF+DC to the countable chro-
matic number of the Vitali equivalence relation on R. [?, Chapter 11] contains
various results in this direction for locally countable graphs and hypergraphs.
Difficulties quickly mount when one steps out of the locally countable realm.
As one interesting and traditional class of cases, the algebraic graphs and hy-
pergraphs on Euclidean spaces are combinatorially quite complex, but none of
them seem to have any relationship with the Vitali equivalence relation. In an
encouraging development, the question has been resolved in the affirmative for
all algebraic graphs Γ containing no perfect clique [?]. In this paper, I resolve a
quite special case in arity three, which requires several additional ideas.

Definition 1.2. Let 〈X, ·〉 be a standard Borel abelian group. A hypergraph Γ
of arity three on X is a slim linear hypergraph if there are Borel homomorphisms
g0, g1, g2 : X → X such that
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1. all of g0, g1, g2 and g0 + g1, g1 + g2, and g0 + g2 are injections;

2. Γ is the set of all triples {x0, x1, x2} of pairwise distinct points such that
under suitable enumeration, g0(x0) + g1(x1) + g2(x2) = 0.

In most interesting cases, the sum g0+g1+g2 is equal to the zero homomorphism,
and then the hypergraph Γ will be invariant under translations. Slim linear
hypergraphs carry geometric meaning:

Example 1.3. Let c ∈ C be a non-real complex number, and consider the
hypergraph on C given by the arithmetic identity c · (x1 − x0) = x2 − x0. It is
the set of all triangles in the complex plane directly similar to the triangle with
vertices 0, 1, c.

Theorem 1.4. Let 〈X,+〉 be a standard Borel abelian group, and let Γ be a
finite union of slim linear hypergraphs of arity three on X. Then in a balanced
forcing extension of the choiceless Solovay model, the following items hold:

1. ZF+DC holds and Γ has countable chromatic number;

2. there is no Vitali set;

3. there is no complete countable section for the E1 equivalence relation.

Corollary 1.5. Relative to an inaccessible cardinal, it is consistent with ZF+DC
that the hypergraph of equilateral triangles in R2 has countable chromatic num-
ber, yet there is no Vitali set.

The theorem understates the understanding of the resulting model. In particu-
lar, I prove that a certain graph simpler than the Vitali equivalence relation–the
diagonal Hamming graph–has uncountable chromatic number in the resulting
model.

In a number of natural cases, I can show that it is not entirely easy to color
slim linear hypergraphs. No such coloring will appear in a compactly balanced
forcing extension of the choiceless Solovay model as per the following theorem.
The broad class of compactly balanced forcings was introduced in [?, Section
9.3]; it includes in particular the poset for adding a Ramsey ultrafilter, or the
poset for adding a linear ordering of a quotient space of any Borel equivalence
relation.

Theorem 1.6. Let 〈X,+〉 be a Polish abelian group, let n ≥ 3 be a number,
and let gi : X → X for i ∈ n be continuous homomorphisms such that

1. Σi∈ngi = 0;

2. every open neighborhood of 0 in X contains pairwise distinct nonzero
points xi for i ∈ n such that Σi∈ngi(xi) = 0.

Then, in every compactly balanced extension of the choiceless Solovay model,
the hypergraph Γ on X consisting of all tuples {xi : i ∈ n} of pairwise distinct
elements of X such that Σi∈ngi(xi) = 0 has uncountable chromatic number.
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Corollary 1.7. Relative to an inaccessible cardinal, it is consistent with ZF+DC
that there is a non-principal ultrafilter on ω, yet the hypergraph of equilateral
triangles in R2 has uncountable chromatic number.

There are many open questions left. Since the equilateral triangle hyper-
graph in R3 is not linear, methods of this paper do not apply to it, and it is the
simplest algebraic hypergraph for which I do not know if its countable chromatic
number implies existence of a Vitali set in ZF+DC. I do not know whether the
chromatic number of the Kechris–Solecki–Todorcevic graph G0 [?] is countable
or uncountable in the resulting model. Finally, one should be able to remove
the inaccessible cardinal assumption from the proof, but I have not done the
footwork necessary for that.

The architecture of the paper is probably somewhat surprising to a reader
who is not familiar with the mysterious ways of geometric set theory [?]. In
Section 2, I define the central combinatorial tool of the paper: the remainder
graphs of a ternary hypergraph. This is an interesting object regardless of
any forcing considerations, and the main point of this paper is that in the
case of linear hypergraphs, the remainder graphs can be handled efficiently. In
Section 3, I define a couple of c.c.c. finite condition coloring posets for various
graphs and hypergraphs. A fine evaluation of their chain condition situation
is necessary to exclude the Vitali set in the model for Theorem 1.4. This part
of the paper is reminiscent of certain computations of Todorcevic [?] regarding
similar finite condition c.c.c. posets. In Section 4, I define a σ-closed balanced
poset P adding a coloring of the hypergraph Γ of Theorem 1.4. The model for
Theorem 1.4 is then a P -extension of a choiceless Solovay model derived from
an inaccessible cardinal. Section 5 then checks the properties of this model,
using the remainder graphs and c.c.c. coloring posets identified earlier. Finally,
Section 6 shows that there are natural algebraic hypergraphs for which in ZF
countable chromatic number has consequences contradicting the conclusion of
Theorem 1.4.

The terminology of the paper follows the set theoretic standard of [?], in
matters of descriptive set theory that of [?], in matters of geometric set theory
that of [?]. E1 is the equivalence relation on the set Rω connecting points x, y
if the set {n ∈ ω : x(n) 6= y(n)} is finite. The diagonal Hamming graph H<ω is
the graph on the set of all functions x ∈ ωω such that ∀n x(n) ≤ n, connecting
points x, y if there is exactly one n ∈ ω such that x(n) 6= y(n). HF denotes the
set of all hereditarily finite sets.

2 Remainder graphs

The consistency result depends on several combinatorial observations. The first
seems critical and irreplaceable in the argument, and its limitations seem to
be the main obstacle to natural generalizations of Theorem 1.4. Consider the
following definition.

Definition 2.1. Let Γ be a hypergraph on a Polish space X, and let A ⊂ X
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be a set. The remainder graph is the graph ΓA on X \ A connecting distinct
points x, y if there is z ∈ A such that {x, y, z} ∈ Γ holds.

The most natural case of remainder graphs appears when A is a suitably al-
gebraically closed subset of X, possibly uncountable. I will be interested in
the chromatic number of the remainder graphs. This looks like a completely
intractable issue, but some cases do allow for informative insight. Consider the
following examples.

Example 2.2. Let Γ be the hypergraph on R of all triples {x, y, z} of pairwise
distinct elements which (in some ordering) satisfy the identity x − 2y + z = 0.
Let A ⊂ R be a subfield. Then the remainder graph contains no circuits of odd
length, and it contains an |A| × |A|-biclique.

Proof. First, I will show that there are no circuits of odd length in the remainder
graph. For this, consider the group G of all non-constant linear functions from
R to itself with the composition operation, acting on R by application. For
each such a function g(u) = au + b, call a the slope of the function. The slope
function is obviously a homomorphism from the group G to the multiplicative
group of nonzero real numbers. Each element of G except for the identity has
at most one fixed point.

Now, let n ∈ ω be a number and 〈xi : i ≤ n〉 be a path in the remainder
graph with xn = x0; I must show that n is even. To this end, for each i ∈ n find
zi ∈ V such that {xi, xi+1, zi} ∈ Γ. There are three possible mutually exclusive
cases how this can occur:

• xi − 2xi+1 + zi = 0. In this case, let gi : X → X be the function defined
by gi(u) = (u+ zi)/2;

• xi − 2zi + xi+1 = 0. In this case, let gi : X → X be the function defined
by gi(u) = 2zi − u;

• zi − 2xi + xi+1 = 0. Here, let gi(u) = 2u− zi.

All the functions gi for i ∈ n are coded in F0, and gi(xi) = xi+1. The compo-
sition of all the elements gi ∈ G for i ∈ n is a linear function coded in A, and
it has x0 /∈ A as a fixed point, therefore it has to be the identity. Now consider
the slopes of the functions gi: in the first case, it is 1/2, in the second case,
it is −1, in the third case, it is 2. The product has to give 1, the slope of the
identity. Thus, the first and third case must be used equal number of times, and
the second case must be used even number of times. In conclusion, n is even as
desired.

Now, to produce the required biclique in the remainder graph, let B0, B1 ⊂ A
be disjoint sets of reals of cardinality |A|. Let ε > 0 be a real number in R \A.
Consider the set C0 = B0 + ε and the set C1 = (B1 + ε)/2. These are disjoint
subsets of R \ A, and they form an |A| × |A| bi-clique in the remainder graph.
To see this, let x0 ∈ B0 and x1 ∈ B1 be points. Then (x0 + ε)− (2(x1 + ε)/2) =
x0 − x1 ∈ A, so {x0 + ε, (x1 + ε)/2, x0 − x1} ∈ Γ and x0 + ε, (x1 + ε)/2 are
connected in the remainder graph as desired.
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Example 2.3. Let Γ be the hypergraph of equilateral triangles in R3. Let F
be any real closed subfield of R properly smaller than R, and let A = F 3. Then
in the remainder graph, one can find a triangle. Just let ε > 0 be a real number
R \ F , let z ∈ A be an arbitrary point, and find any regular tetrahedron with
one vertex equal to z and length of all sides equal to ε. The other three vertices
cannot belong to A since together with z each of them computes ε, and they
form a triangle in the remainder graph.

Example 2.4. Let Γ be the hypergraph of isosceles triangles on R2. Let F be
any real closed subfield of R properly smaller than R, and let A = F 3. Then
the remainder graph contains a perfect clique. To see this, let ε > 0 be a real
number which is not in F , and let z ∈ A be an arbitrary point. Consider the
set C of all points in R2 which are at a distance ε from z. It is immediate to
see that C contains no points from A (since every point in C together with z
computes ε) and C is a clique in the remainder graph.

Finally, we get to the hypergraph of immediate interest to the present paper.

Definition 2.5. Let 〈X,+〉 be a standard Borel abelian group. Let Γ =
⋃
i∈n Γi

be a finite or countable union of slim linear hypergraphs of arity three, for n ≤ ω.
Let Γi be generated by continuous homomorphisms gij for j ∈ 3. A set A ⊂ X

is Γ-closed if it is a subgroup of X, it is closed under each homomorphism gij
and its inverse for i ∈ n and j ∈ 3, and also closed under the inverses of the
homomorphisms gij + gik for i ∈ ω and j, k distinct indices in 3.

Note that all the homomorphisms mentioned in the above definitions are injec-
tive per the definition of a slim linear hypergraphs, so their inverses are well-
defined partial functions. The definition of Γ-closed set seems to depend on
the choice of the decomposition of Γ into slim hypergraphs and their generating
homomorphisms; I will keep such decomposition and its generating homomor-
phisms always fixed. In this way, every infinite subset of X has a smallest
Γ-closed superset which is of the same cardinality, and an increasing union of
Γ-closed sets is Γ-closed.

Example 2.6. Let 〈X,+〉 be a standard Borel abelian group. Let Γ be a finite
(resp. countable) union of slim linear hypergraphs of arity three. Let A ⊂ X
be a Γ-closed set. Then there is a homomorphism of the remainder graph ΓA
to a locally finite (resp. locally countable) graph.

Proof. et Γ =
⋃
i∈n Γi be a finite or countable union of slim linear hypergraphs

of arity three, for n ≤ ω. Let Γi be generated by continuous homomorphisms gij
for j ∈ 3. Let E be the equivalence relation on X \A connecting distinct points
x0, x1 if x0 − x1 ∈ A. Let Y be the set of all E-classes, and define the graph Θ
on Y which connects classes c 6= d if there are representatives x ∈ c and y ∈ d
which are connected in the remainder graph. I will show that that the graph Θ
is locally finite (resp. locally countable), and the map f : X → Y , f(x) = [x]E
is a homomorphism of the remainder graph to Θ.

To show that the map f is a homomorphism, it is only necessary to show
that if distinct points x0, x1 ∈ X \A are connected in the remainder graph, then
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they are not E-equivalent. Suppose towards a contradiction that they are. Let
i ∈ n and x2 ∈ A be such that gi0(x0)+gi1(x1)+gi2(x2) = 0, and let y ∈ A be such
that x0 +y = x1. Since A is a subgroup of X closed under the homomorphisms,
plugging in for x1 it becomes clear that (g0 + g1)(x0) ∈ A. Since A is closed
under the inverse of g0 + g1, it follows that x0 ∈ A, contradicting the initial
choice of x0.

To show that the graph Θ is locally finite (resp. locally countable), it will
be enough to show that if c, d, d′ are E-classes, i ∈ n is an index, and there are
points x0, x

′
0 ∈ c, x1 ∈ d0, x′1 ∈ d′, and x2, x

′
2 ∈ A such that gi0(x0) + gi1(x1) +

gi2(x2) = 0 and gi0(x′0)+gi1(x′1)+gi2(x′2) = 0 both hold, then d = d′. To see that,
subtract the latter equality from the former and get gi0(x0−x′0)+gi1(x1−x′1) ∈ A.
The first summand here belongs to A as x0 E x′0 holds. As A is closed under
the inverse of gi1, it follows that x1 − x′1 ∈ A holds. Thus d = d′ as desired.

Corollary 2.7. Let 〈X,+〉 be a standard Borel abelian group. Let Γ be a union
of countably many slim linear hypergraphs of arity three on X. Whenever A ⊂ X
is a Γ-closed set, the chromatic number of Γ(A) is countable.

One can use the chromatic number of remainder graphs to prove that the chro-
matic number of Γ itself is countable. In addition, the mechanics of this proof
will drive the consistency arguments in Section 5. For a notational convenience,
my (hyper)graph colorings of hypergraphs will often have the countable set HF
of hereditarily finite sets as a co-domain.

Definition 2.8. Let 〈X,+〉 be a Polish abelian group. Let Γ be a countable
union of slim linear hypergraphs. A coherent sequence of colorings is a tuple
〈I,≤, Ai, ci, di〉 where

1. 〈I,≤〉 be a linearly ordered set;

2. 〈Ai : i ∈ I〉 is an inclusion-increasing sequence of Γ-closed subsets of X;

3. for every x ∈
⋃
iAi, there is a smallest index i ∈ I such that x ∈ Ai;

4. ci : Ai → HF is a Γ-coloring;

5. if i is the smallest element of I then di = 0; otherwise, write ∆i for the
remainder graph ∆(

⋃
j<iAj), and di : Ai \

⋃
j<iAj → HF is a Γ⋃

j<i Aj
-

coloring.

Note that the linearly ordered set I must have a smallest element, namely the
smallest i such that 1 ∈ Fi. One way to satisfy item (3) is to insist that ≤ is a
well-ordering; however, I will have an opportunity to use an ill-founded linear
order as well.

Definition 2.9. The amalgamation of a coherent sequence 〈I,≤, Ai, ci, di〉 of
colorings is the function e on

⋃
iAi defined as follows. For every x ∈

⋃
iAi find

the smallest i ∈ I such that x ∈ Ai. If i is the smallest element of I, then let
e(x) = fi(x); otherwise, let e(x) = 〈fi(x), gi(x)〉.
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Note that the amalgamation extends fi for the smallest element i ∈ I.

Proposition 2.10. The amalgamation of a coherent sequence of colorings is a
Γ-coloring.

Proof. Let 〈I,≤, Ai, ci, di〉 be a coherent sequence of colorings. Write Y =⋃
iAi. For each x ∈ X write i(x) for the least i ∈ I such that x ∈ A. Let e

be the amalgamation of the sequence. Let a ⊂ X be a Γ-hyperedge and work
to show that e � a is not constant. Let i be the ≤-largest element of the finite
set {i(x) : x ∈ a}. There are three configurations to consider; their discussion
completes the proof.
Case 1. There is exactly one point x ∈ a such that i(x) = i. This is in fact
impossible, since the subgroup

⋃
j<iAj is Γ-closed.

Case 2. There are exactly two points x ∈ a such that i(x) = i. In this case,
these two points are ∆i-connected and they receive distinct di-colors, as di is a
∆i-coloring. In consequence, they also receive distinct e-colors.
Case 3. All three points x ∈ a have i(x) = i. In this case, a is not ci-
monochromatic, since ci is a Γ-coloring. As a result, a is not e-monochromatic
either.

Corollary 2.11. Let 〈X,+〉 be a Polish abelian group. Let Γ be a countable
union of countably many slim linear hypergraphs of arity three on X. The
chromatic number of Γ is countable.

Proof. By induction on the cardinality of a Γ-closed set A ⊂ X I will argue
that there is a Γ-coloring from A to HF. This is clear if |A| = ℵ0, since one
can choose any injection as the coloring. Suppose now that κ is an uncountable
cardinal, |A| = κ, and the statement has been proved for all Γ-closed sets
of cardinality smaller than κ. Express F =

⋃
β∈α Fβ as an increasing union

of Γ-closed sets of cardinality smaller than κ. Use the induction hypothesis
to find a Γ-coloring cβ : Aβ → HF and Example 2.6 to find a ∆(

⋃
γ∈β Aγ)-

coloring dβ : Aβ \
⋃
γ∈β Aγ → HF, this for every β ∈ α. Let c : A → HF be

the amalgamation of 〈cβ , dβ : β ∈ α〉. Proposition 2.10 confirms that this is a
Γ-coloring, completing the induction step and the proof.

3 C.c.c. coloring posets

Another issue seemingly unrelated to the consistency result in question is the
possibility of forcing colorings of given (hyper)graphs by finite conditions. If Γ
is a hypergraph on a set X of countable chromatic number, there may not be a
coloring definable from Γ–this is the basic difficulty of descriptive combinatorics.
However, there still may be a definable poset adding a coloring which has useful
regularity properties. The poset I use in this paper is the simplest one:

Definition 3.1. Let Γ be a hypergraph on a set X. The finite approximation
coloring poset R(Γ) is the poset of all partial finite colorings p : X → ω, ordered
by reverse inclusion.
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The countable set used as the target of the colorings is of course immaterial; I
may use the set HF instead of ω. The property of the coloring posets critical
for this paper is the following.

Definition 3.2. Let R be a poset.

1. A set A ⊂ R is Ramsey-centered if for every n ∈ ω there is m ∈ ω such
that for every m-tuple 〈ri : i ∈ m〉 of elements of A there is a set b ⊂ m of
cardinality n such that the set {ri : i ∈ b} has a common lower bound in
R.

2. if z is a set, then R is z-definably σ-Ramsey-centered if R can be covered
by an ω-sequence of Ramsey-centered sets which is defined from z

There are several situations in which I can show that the finite approximation
coloring poset is suitably definably Ramsey-centered. Some are exhibited in [?,
Section 11.6]. The cases I need in this paper are recorded in the following two
similar theorems with similar proofs.

Theorem 3.3. Let X be a set. Let Γ be a hypergraph of arity three on X such
that there is a number d ∈ ω such that for every x0, x1 ∈ X the set {x2 ∈
X : {x0, x1, x2} ∈ Γ} has cardinality at most d. Then the finite approximation
coloring poset for Γ is X,Γ-definably σ-Ramsey centered.

Proof. Let Akl ⊂ R(Γ) be the set of all conditions whose domain has cardinality
k ∈ ω and the range is a subset of l ∈ ω. It will be enough to show that Akl is
Ramsey-centered.

To this end, let n ∈ ω be a number. Increasing n if necessary I may assume
that n > d · [2k]2 and n > 3l. Let m be a number such that m → (n)39k+1. It
will be enough to show that among any m many elements of Ai one can find n
many with a common lower bound. To this end, let {pi : i ∈ m} ⊂ Ak be a set.
For each i ∈ m, fix an enumeration {xij : j ∈ k} of its domain. Consider the

following map f on [m]3. If u ∈ [m]3 is a set, let i0 < i1 < i2 be its elements in
increasing order and define f(u) by a split into cases:

• if there is an index b ∈ 3 and an index j ∈ k such that xibj belongs to at

least one of dom(pic) for c 6= b and it is not equal to at least one xicj for
c 6= b, then the functional value will be f(u) = 〈0, b, j〉 for some such b
and j;

• if the previous item fails and there are b ∈ 3 and j ∈ k such that for some
c ∈ 3 distinct from b, xibj = xicj and pib(x

ib
j ) 6= pic(x

ic
j ), then f(u) = 〈1, b, j〉

for some such b, j;

• if the previous items fail and there are b ∈ 3 and j ∈ k such that there is
a hyperedge e ∈ Γ which is contained in

⋃
i∈u dom(pi) and such that xibj

is the only element of e which is not in dom(pic) for any c 6= b, then let
f(u) = 〈2, b, j〉 for some such b, j;
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• if all of the previous items fail then f(u) =OK.

By the Ramsey assumption on the number m, there is a set a ⊂ m of cardinality
n which is homogeneous for the coloring f . I will argue that the homogeneous
color is OK, the sets dom(pi) for i ∈ a form a ∆-system,

⋃
i∈a pi is a function,

and every Γ-edge in dom(
⋃
i∈a pi) is a subset of dom(pi) for some i ∈ a. That

edge will not be monochromatic since pi is a Γ-coloring. In conclusion,
⋃
i∈a pi

is a common lower bound in R(Γ) of the conditions pi for i ∈ a. This will
conclude the proof of the theorem. I proceed in a sequence of claims.

Claim 3.4. The homogeneous color is not 〈0, b, j〉 for any b ∈ 3 and j ∈ k.

Proof. Suppose towards a contradiction that this occurs; for definiteness, as-
sume that b = 2. Then there are only 2k many options for xij for i ∈ a (they all
must come from the first two elements of the set a), so they must repeat, and
there must be a set u ∈ [a]3 such that the value of xij for i ∈ u does not depend
on i. This contradicts the assumption that f(u) = 〈0, b, j〉.

It follows that writing G = {j ∈ k : the value of xij does not depend on i ∈ a},
the sets dom(pi) for i ∈ a form a ∆-system with heart H = {xij : i ∈ a, j ∈ G}.
To see this, note that if i0 6= i1 were two distinct elements of a and j ∈ k were
such that xi0j ∈ dom(pi1) \ {xi1j }, then this would trigger the first item above

for any u ∈ [a]3 containing both elements i0, i1, contradicting the claim.

Claim 3.5. The homogeneous color is not 〈1, b, j〉 for any b ∈ 3 and j ∈ k.

Proof. If it were, j ∈ G would have to occur. There are only l many colors
available for pi(x

i
j) for i ∈ a, which means that one of them has to repeat at

least three times. Let u ∈ [a]3 be such that pi(x
i
j) for i ∈ u does not depend on

i. Then f(u) = 〈1, b, j〉 must fail, a contradiction.

It follows that
⋃
i∈a pi is a function. Any disagreement of distinct conditions on

the common part H of their domain would trigger the second item above for
some set u ∈ [a]3, contradicting the claim.

Claim 3.6. The homogeneous color is not 〈2, b, j〉 for any b ∈ 3 and j ∈ k.

Proof. Suppose towards a contradiction that this occurs; for definiteness, as-
sume that b = 2. Then there are at most d · [2k]2 many options for the value
of xij as i varies over all elements of a by the assumption on the hypergraph Γ.

This means that these values have to repeat, and there will be a set u ∈ [a]3

such that xij is the same for all i ∈ u. Such u cannot have f(u) = 〈2, b, j〉.

Now, let e be a Γ-hyperedge in dom(
⋃
i∈a pi); I need to argue that there is a

single i ∈ a such that e ⊂ dom(pi). Otherwise, there would be i ∈ a such
that e ∩ dom(pi) \H is a singleton, which would trigger the third item for any
set u ∈ [a]3 containing i and the other two indices needed to reconstruct e,
contradicting the claim. This completes the proof of the theorem.
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Theorem 3.7. Let X be a set and let Γ be a graph such that for every x0 ∈ X,
the set {x1 ∈ X : {x0, x1} ∈ Γ} is finite. Then R(Γ) is X,Γ-definably Ramsey-
σ-centered.

Proof. For each k, l, d ∈ ω let Akld = {p ∈ R(Γ) : |dom(p)| = k, rng(p) ⊂ l, and
each point in dom(pi) has at most d-many neighbors}. It will be enough to
show that each set Akld is Ramsey-centered.

To this end, let k, l, d, n ∈ ω be arbitrary. Increasing the number n if nec-
essary, I may assume that n > d + 2, k + 2. Let m ∈ ω be a number such that
m → (n)26k+1. It will be enough to show that among any m many elements
of Akld one can find n many with a common lower bound, i.e. such that their
union is still a partial Γ-coloring.

To do that, let {pi : i ∈ m} ⊂ Akld be any set. For each i ∈ m, fix an
enumeration 〈xij : i ∈ k〉 of dom(pi). Consider the following map f on [m]2. If

u ∈ [m]2 is a set, let i0 < i1 be its elements in increasing order and define f(u)
by a split into cases:

• if there is an index b ∈ 2 and an index j ∈ k such that xibj 6= x
i1−b
j yet

xibj ∈ vi1−b , then the functional value will be f(u) = 〈0, b, j〉 for some such
b and j;

• if the previous item fails and there is j ∈ k such that xij does not depend

on i ∈ u, yet the value pi(x
i
j) is different for the two numbers i ∈ u, then

f(u) = 〈1, 0, j〉 for some such j;

• if the previous items fail and there are b ∈ 2 and j ∈ k such that the point
xibj /∈ dom(pi1−b) is Γ-connected with some point in dom(pi1−b)\dom(pib),
then let f(u) = 〈2, b, j〉 for some such b, j;

• if all of the previous items fail then f(u) =OK.

Use the Ramsey property of m to find a set a ⊂ m of cardinality n which is
homogeneous for f . As in the proof of Theorem 3.3, one can argue that the
sets dom(pi) for i ∈ a form a ∆-system,

⋃
i∈a pi is a function, and every Γ-edge

in dom(
⋃
i∈a pi) is a subset of dom(pi) for some i ∈ a. That edge will not be

monochromatic since pi is a Γ-coloring. In conclusion,
⋃
i∈a pi is a common

lower bound in R(Γ) of the conditions pi for i ∈ a.

4 A balanced coloring poset

Towards the proof of Theorem 1.4, I must find a balanced forcing which gener-
ates the desired model of ZF+DC over the choiceless Solovay model. I use this
opportunity to isolate a rather general scheme for coloring ternary hypergraphs
of the following form:

Definition 4.1. Let 〈X,+〉 be a standard Borel abelian group and Γ a finite
union of slim linear ternary hypergraphs on X. Let C =

⋃
n Cn be a countable

10



set decomposed into infinitely many infinite sets. The coloring poset P consists
of all p such that there is a countable Γ-closed set dom(p) ⊂ X such that
p : dom(p) → C is a Γ-coloring. The ordering is defined by q ≤ p if p ⊆ q
and for every dom(p)-orbit a ⊂ dom(q) there is a number m ∈ ω such that
q′′a ⊂

⋃
n∈m Cm.

For the last condition in the definition, note that the group dom(p) acts on
X \ dom(p) by addition, and dom(q) \ dom(p) is a set invariant under this
action. The choice of sets Cn for n ∈ ω is clearly immaterial; for convenience,
below I will set C = HF \ {0} and Cn = {c ∈ C : |c| = n+ 1}.

Proposition 4.2. P is an analytic, transitive, σ-closed relation.

Proof. The analyticity of P is clear. For the transitivity, assume that r ≤ q ≤ p
are conditions in P , and argue that r ≤ p must hold. For this, suppose that
a ⊂ dom(r) \ dom(p) is a dom(p)-orbit; I must show that there is a number
m ∈ ω such that q′′a ⊂

⋃
n∈m Cm. There are two cases. Either, a contains some

element of dom(q). In this case, a ⊂ dom(q) holds, and the existence of the
number m follows from q ≤ p. Or, a∩ dom(q) = 0. In this case, a is a subset of
a single dom(q)-orbit and the existence of the number m follows from r ≤ q.

For the σ-closure, it is clear that if 〈pn : n ∈ ω〉 is a descending sequence of
conditions, then

⋃
n pn is its lower bound.

Proposition 4.3. For every p ∈ P and every x ∈ X there is q ≤ p such that
x ∈ dom(q).

Proof. First, choose dom(q) to be an arbitrary countable Γ-closed set containing
dom(p) as a subset and x as an element. Let q : dom(q)→ C be a function such
that q � dom(p) = p and q � dom(q) \ dom(p) is an injection whose range is
a subset of C0. Then q is a Γ-coloring: any hyperedge e ⊂ dom(q) is either
contained in dom(p) and not monochromatic as p ∈ P , or it contains more
than one element of dom(q) \ dom(p) by the Γ-closure of dom(p), and it is not
monochromatic as q \ p is an injection. Since q ≤ p holds, the proposition
follows.

Proposition 4.4. Let p̄ : X → C be a total Γ-coloring. Let V [G0] and V [G1]
be generic extensions such that V [G0] ∩ V [G1] = V . Let p0 ∈ P ∩ V [G0] and
p1 ∈ P ∩ V [G1] be conditions such that p0 ≤ p̄ and p1 ≤ p̄. Then the conditions
p0, p1 are compatible in P .

Note that the analytic poset P is reinterpreted in every transitive model of set
theory; in particular, the conditions p0, p1 are compatible in the poset P as
reinterpreted in V [G0, G1] or any larger model.

Proof. Work in the model V [G0, G1].

Claim 4.5. p0 ∪ p1 is a function.

11



Proof. This follows from the assumption that V [G0]∩V [G1] = V : it then must
be the case that dom(p0) ∩ dom(p1) ⊂ V . The functions p0 � V and p1 � V are
both the same, equal to p̄. The claim follows.

Of course, this does not end the proof; I have to find a countable Γ-closed set
dom(q) ⊂ X which contains dom(p0 ∪ p1) and a condition q ∈ P with this
domain such that q ≤ p0, p1 holds. To this end, for every x ∈ X \ dom(p0 ∪ p1)
let a0(x) = {x0 ∈ dom(p0)\V : ∃x1 ∈ dom(p1)\V {x0, x1, x} ∈ Γ} and a1(x) =
{x1 ∈ dom(p1) \ V : ∃x0 ∈ dom(p0) \ V {x0, x1, x} ∈ Γ}.

Claim 4.6. Let x ∈ X \ dom(p0 ∪ p1) be a point. Each of the sets a0(x), a1(x)
is a subset of a finite union of X ∩ V -orbits. In addition,

1. if b is a dom(p0)-orbit, then
⋃
x∈b\dom(p1)

a1(x) is a subset of a finite union
of X ∩ V -orbits;

2. same with subscripts 0, 1 interchanged.

Proof. Let g0, g1, g2 be linear homomorphisms defining one of the slim linear
components of the hypergraph Γ. For the first sentence of the claim, it will be
enough to show that if x0, x

′
0 ∈ dom(p0)\V and x1, x

′
1 ∈ dom(p1)\V are points

such that g0(x0)+g1(x1)+g2(x) = 0 and g0(x′0)+g1(x′1)+g2(x) = 0, then x0, x
′
0

are in the same X ∩ V -orbit, and so are x1, x
′
1. To see this, subtract the latter

equation from the former, and get g0(x0 − x′0) = −g1(x1 − x′1). The left-hand
side is in V [G0], the right-hand side is in V [G1], and since V [G0] ∩ V [G1] = V ,
both are in V . Since V is closed under inverses of g0 and g1, x0 = x′0 ∈ X ∩ V
and x1 − x′1 ∈ V as desired.

For (1) it will be enough to show that if x0, x
′
0 ∈ dom(p0) \ V and x1, x

′
1 ∈

dom(p1) \ V and x, x′ ∈ b are points such that g0(x0) + g1(x1) + g2(x) = 0 and
g0(x′0) + g1(x′1) + g2(x′) = 0, then x1, x

′
1 are in the same X ∩ V -orbit. Again,

subtract the latter equation from the former, getting g0(x0−x′0)−g2(x2−x′2) =
−g1(x1 − x′1). The left hand side is in V [G0] since x2 − x′2 is; the right hand
side is in V [G1]. As before, this means that −g1(x1 − x′1) ∈ V and x1 − x′1 ∈ V
as desired. The proof of (2) is symmetric.

Now, for each x ∈ X \ dom(p0 ∪ p1) let nx be the smallest number n ∈ ω
such that there are no points x0 ∈ dom(p0) \ V and x1 ∈ dom(p1) \ V such
that p0(x0) ∈ Cn, p1(x1) ∈ Cn, and {x0, x1, x} ∈ Γ. The claim (together with
p0, p1 ≤ p̄) shows that nx is well-defined and in addition, for every dom(p0)-
orbit b, the numbers nx for x ∈ b are bounded, and for every dom(p1)-orbit c,
the numbers nx for x ∈ c are bounded. Now, let dom(q) ⊂ X be any countable
Γ-closed set containing dom(p ∪ p1), write d = dom(q) \ dom(p0 ∪ p1), and
let q : dom(q) → C be any function such that p0 ∪ p1 ⊂ q, for every x ∈ d
q(x) ∈ Cnx , and q � d is an injection. Such a function clearly exists since the
sets Cn for every n ∈ ω are infinite. It will be enough to show that q ∈ P and
q is a common lower bound of p0, p1.

12



First, I must argue that q is a Γ-coloring. Let e ⊂ dom(q) be a Γ-hyperedge;
I must argue that e is not monochromatic. The discussion splits into several
possible configurations.
Case 1. e ⊂ dom(p0 ∪ p1). In this case, a counting argument shows that there
is i ∈ 2 such that dom(pi) contains two points of e, and the Γ-closure of dom(pi)
shows that dom(pi) contains all points of e. Then e cannot be monochromatic
since pi is a Γ-coloring.
Case 2. e contains exactly one point, say x, in the set d. In this case, the
closure properties of the sets dom(p0) and dom(p1) show that there must be a
point x0 ∈ dom(p0) \V and a point x1 ∈ dom(p1) \V such that e = {x0, x1, x}.
Then, e is not monochromatic by the choice of the number nx and the fact that
q(x) ∈ Cnx .
Case 3. e contains more than one point in the set d. In this case, e is not
monochromatic since q � d is an injection.

Finally, I must show that q ≤ p0; the proof of q ≤ p1 is symmetric. To
this end, suppose that b ⊂ dom(q) \ dom(p0) is a dom(p0)-orbit; I must show
that q′′b is a subset of the union of finitely many sets Cn for n ∈ ω. Write
b0 = b ∩ dom(p1) and b1 = b \ dom(p1).

The first observation is that b0 is a dom(p̄)-orbit: if x, x′ ∈ b0 then x− x′ ∈
V [G1] as x, x′ ∈ V [G1], and x − x′ ∈ V [G0] as b0 is a subset of dom(p0)-orbit.
Since V [G0]∩V [G1] = V , it follows that x−x′ ∈ V ; as x, x′ ∈ b0 were arbitrary,
it follows that b0 is a dom(p̄)-orbit. Since p1 ≤ p̄ is assumed, it follows that q′′b0
is a subset of the union of finitely many sets Cn for n ∈ ω.

The second observation is that the set c =
⋃
x∈b1 a1(x) ⊂ dom(p1) is a subset

of a finite union of p̄-orbits, and since p1 ≤ p̄ is assumed, the set q′′c is covered
by a finite union of the sets Cn for n ∈ ω. Let m ∈ ω be some number such
that Cm ∩ q′′c = 0. It follows from the definitions that nx ≤ m holds for every
x ∈ b1, therefore q′′b1 ⊂

⋃
n≤m Cn holds.

The two observations taken together show that q′′b is a subset of the union
of finitely many sets Cn for n ∈ ω as desired.

Corollary 4.7. The poset P is balanced, and in fact placid in the sense of [?,
Definition 9.3.1].

Proof. It will be enough, for every condition p ∈ P , to find a total coloring
p̄ : X → HF such that the range of p̄ \ p consists of sets of cardinality at most
two. For then, in any generic extension collapsing the cardinality of the ground
model continuum to ℵ0, it will be the case that p̄ ∈ P and p̄ ≤ p holds. In
addition, Proposition 4.4 then shows that p̄ will be exactly the balanced (or
placid) virtual condition required in the definition of balance (or placidity).

Now, to obtain the extension of p to p̄, use Corollary 2.11 to find a Γ-
coloring c : X → HF and use Corollary 2.7 to find a ∆(dom(p))-coloring d : R2 \
dom(p) → HF. Define the function p̄ by setting p̄(x) = p(x) if x ∈ dom(p),
and p̄(x) = 〈c(x), d(x)〉 if x /∈ dom(p). This is literally an amalgamation of p
with c and d in the sense of Definition 2.9, so Proposition 2.10 shows that p̄ is
a Γ-coloring. By its definition, the range of p̄ \ p consists of sets of cardinality
at most two. This completes the proof.
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5 The independence proofs

Finally, I am in the position to provide the proof of Theorem 1.4. Let κ be an
inaccessible cardinal and let W be the choiceless Solovay model derived from
κ. Let G ⊂ P be a filter generic over W ; I will show that W [G] is a model
witnessing Theorem 1.4. There are several components of that proof.

Proposition 5.1. In the model W [G], there is no Vitali set.

Proof. It will be enough to show that the poset P has Ramsey control as in [?,
Section 11.6]. This means that in ZFC, for a condition p ∈ P there is a triple
〈R,≤, C, p̄〉 such that

1. R,≤, p̄ are all definable from ordinal parameters and p;

2. C is a collection consisting of Ramsey centered subsets of R, each of which
is definable from ordinal parameters and p, and R =

⋃
C;

tem p̄ is an R-name for a total Γ-coloring such that R 
 Coll(R,ℵ0) 
 p̄ ≤
p̌.

The poset R is the finite support iteration of length ω1 in which the α-th
iterand (in the model R2 ∩ V [Gβ : β ∈ α]) is the poset Rα0 × Rα1 where Rα0
is the finite condition poset coloring the hypergraph Γ from Theorem 3.3. To
specify Rα1, use Example 2.6 to find a homomorphism hα : Xα → Yα, where
Xα = X \

⋃
β∈α{V [Gγ : γ ∈ β} (if α = 0) or X \ dom(p) if α = 0 and hα is

a homomorphism of the remainder graph ΓX\Xα to some locally finite graph
∆α. Note that Example 2.6 provides hα, Yα,∆α which are definable from p (if
γ = 0) or from the sequence of intermediate generic extensions (if γ > 0). Rα1
will then be the finite condition poset adding a coloring of the graph ∆α.

Each of these posets is suitably definably σ-Ramsey-centered, and c.c.c. This
means that the finite support iteration R is c.c.c. and it is a union of Ramsey-
centered pieces, each of which is definable from p and some ordinal parameters.
This is proved as in [?, Proposition 11.6.3], noting that the Suslinity of the
posets can be replaced with ordinal definability from the sequence of generic
extensions.

At each stage of the iteration, Rα+1 adds a Γ-coloring ċα and Rα1 adds a
coloring ḋα of the remainder graph which is the pullback of the generic ∆α-
coloring by the homomorphism hα. In the end, let p̄ be the name for the
amalgamation of the coherent sequence 〈p, ċα, ḋα : α ∈ ω1〉 of colorings as in
Definition 2.9. This will be a total Γ-coloring extending p by Proposition 2.10;
R 
 Coll(R,ℵ0) 
 p̄ ≤ p̌ follows from the definitions.

The proof of the proposition is now completed by a reference to [?, Theorem
11.6.5] applied to the Vitali equivalence relation viewed as a Borel graph.

Proposition 5.2. In the model W [G], the equivalence relation E1 does not have
a complete countable section.
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Proof. I will in fact show that the poset P is nested balanced [?, Definition
9.4.2]. Then, by [?, Theorem 9.4.4], in the P -extension of the Solovay model,
the cardinality of the E1-quotient space is not smaller than the cardinality of the
orbit space of any Polish group action. In particular, there is no complete E1

section S ⊂ (2ω)ω, since then the map sending any E1-class to its intersection
with S would be an injection of the E1-quotient space to the F2-quotient space,
which is an orbits space of an action of the full permutation group S∞.

To recall what nested balance means, a sequence 〈Mi : i ∈ ω〉 of transitive
models of ZFC is coherent [?, Section 4.2] if M0 ⊇ M1 ⊇ . . . and for every
ordinal α and every number i ∈ ω, the sequence 〈Mj ∩Vα : j > i〉 belongs to the
model Mi. The sequence is choice-coherent [?, Section 4.3] if for every ordinal
α there is a well-ordering ≺ of Vα such that for every i ∈ ω, ≺�Mi ∈Mi holds.
For a choice coherent sequence 〈Mi : i ∈ ω〉, write Mω for the intersection model⋂
iMi. It is a transitive model of ZFC.

To show that the poset P is nested balanced, it is enough, for a given choice-
coherent sequence 〈Mi : i ∈ ω〉 of transitive models of ZFC, to build a descending
sequence of suitably balanced conditions. In the context of the poset P , it means
building a total coloring p̄ ∈ M0 such that for each i ∈ ω + 1, the function
p̄i = p̄0 � Mi belongs to the model Mi, and for i ≤ j ≤ ω, p̄i ≤ p̄j ≤ p holds in
any forcing extension which collapses |M0 ∩ R| to ℵ0.

To this end, let ≺ be a well-ordering of the set of all partial maps from R2

to HF such that for each i ≤ ω, ≺� Mi ∈ Mi holds. Let I = ω + 2, and let ≤
be the reverse of the usual ordinal ordering on I. For each i ∈ I, define the real
closed field Fi: if i ≤ ω then Fi = R∩Mi, and Fω+1 = supp(p). For each i ∈ I,
define the colorings ci and di: if i ∈ ω + 1, then ci : F

2
i → HF is the ≺-least

Γ-coloring in the model Mi, and di : F
2
i \ F 2

i+1 → HF is the ≺-least ∆i-coloring
in the model Mi, where ∆i is the remainder graph ∆(F 2

i , F
2
i+1). Also, cω+1 = p

and dω+1 = 0. It is not difficult to see that 〈I,≤, Fi, ci, di : i ∈ I〉 is a coherent
sequence of colorings as in Definition 2.8. Let p̄ be the amalgamation of these
colorings as in Definition 2.9. I claim that p̄ is as required.

First of all, p̄ is a Γ-coloring by Proposition 2.10. The definition of amalga-
mation, and the coherent choices of the colorings ci and di, immediately imply
that for each i ∈ ω+ 1, p̄i = p̄ �Mi belongs to the model Mi. Finally, p̄ extends
p, and by the definition of amalgamation, the range of p̄ \ p consists of ordered
pairs, i.e. of sets of cardinality at most two. It follows that for each i ∈ j ∈ ω+1,
p̄i ≤ p̄j ≤ p holds in any forcing extension in which |Fi| = ℵ0. The proof is
complete.

The proof of Theorem 1.6 is quite different. It closely follows [?, Section
11.8]. It uses an auxiliary hypergraph and a simple proper forcing notion of
independent interest.

Definition 5.3. Let n ≥ 2 be a number. ∆n is the Fσ n-ary hypergraph on
the space Yn = nω, where a ∆n-hyperedge is a set e ∈ [Y ]n such that there is a
finite set a ⊂ ω and z ∈ nω\a such that e = {y ∈ Yn : y � ω \ a = z and y � a is
constant}.
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The hypergraph ∆n is unfortunately not actionable in the sense of [?, Defini-
tion 11.8.1], so the results of [?, Section 11.8] are not applicable verbatim and
a restatement of the proof is necessary. There is a forcing notion associated
with ∆n. Using the Hales–Jewett theorem repeatedly, produce a sequence of
consecutive nonempty finite intervals Im of natural numbers for m ∈ ω such
that for every partition of nIm into m pieces, one of the pieces contains a com-
binatorial line. Let φm be the submeasure on nIm defined by φm(m) =the
smallest number of subsets of nIm , neither of which contains a combinatorial
line, and together they cover b. Thus, φm(nIm) ≥ m the poset Rn consists
of sequences r = 〈bm : m ∈ ω〉 such that bm ⊂ nI

m

is a nonempty set and
lim supm φm(bm) =∞. The ordering on Rn is that of coordinatewise inclusion.
The generic point of nω added by the poset Rm is the concatenation of the
coordinatewise intersection of all conditions in the generic filter. The relevant
properties of Rn are verified as in [?, Claim 11.8.4]:

Proposition 5.4. The poset Rn is proper, bounding, and adds no independent
reals. In addition, for every condition r ∈ Rn, in the Rn-extension below r there
is a ∆n-hyperedge whose elements are all Rn-generic and meet the condition r.

The argument of [?, Section 11.8] can then be repeated to yield

Proposition 5.5. In every compactly balanced extension of the choiceless Solo-
vay model, the chromatic number of ∆n is uncountable.

Finally, I return to abelian groups and linear equations. Let 〈X,+〉 be a
Polish abelian group, let n ≥ 3 be a number, and let gi : X → X for i ∈ n be
continuous homomorphisms such that Σi∈ngi = 0. Write Γ for the hypergraph
of arity n containing a tuple 〈xi : n〉 of pairwise distinct points if Σi∈ngi(xi) = 0.
Suppose that open neighborhood of 0 in X contains a Γ-hyperedge consisting
of nonzero points.

Let d be a left-invariant compatible metric on X. Since X is abelian, d
is both-sided invariant, so complete. By recursion on m ∈ ω, select nonzero
pairwise distinct points xi(m) ∈ X for i ∈ n so that

• Σigi(xi(m)) = 0;

• d(0, xi(m)) < 2−m times the minimum d-distance between distinct points
of the form xj(k) for k ∈ m and j ∈ n.

In addition, define the map πn : Yn → X by setting πn(y) = Σmxym(m). The
completeness an invariance of the metric d implies that the map πn is well-
defined and continuous. In addition, the continuity of the homomorphisms gi
for i ∈ n show that if 〈yi : i ∈ n〉 is a ∆n-hyperedge, then 〈πn(yi) : i ∈ n〉 is a
Γ-hyperedge; the map πn is a homomorphism of ∆n to Γ. In conjunction with
Proposition 5.5 this concludes the proof of Theorem 1.6.
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6 Problematic hypergraphs

There are algebraic hypergraphs for which the existence of colorings yields re-
markable consequences in ZF+DC.

Definition 6.1. ΓR is the hypergraph of arity four on R2 consisting of all sets
of the form a× b where both a, b ⊂ R2 are sets of cardinality two.

To tie this hypergraph in with the previous sections, note that it is a subgraph
of the linear hypergraph on R2 given by the equation x0 − x1 + x2 − x3 = 0.
In ZFC, it is a well-known result (a conjunction of [?] and [?, Theorem 2]) that
existence of countable ΓR-coloring is equivalent to the Continuum Hypothesis.
In ZF, the situation is more nuanced.

Theorem 6.2. (ZF) Suppose that ΓR has countable chromatic number. Then

1. if there is an ω1-sequence of pairwise distinct reals, then there is such a
sequence enumerating all reals;

2. there is a complete countable section for the E1 equivalence relation.

The second item is the opposite of Theorem 1.4(3). While I do not know if the
existence of a Vitali set follows from the countable chromatic number of ΓR,
the first item shows that any negative consistency result in this direction must
use an inaccessible cardinal. It also shows that the results of [?, ?] require the
inaccessible cardinal assumption as well.

Proof. Let c : R2 → ω be a total ΓR-coloring.
For (1), suppose that s = 〈rα : α ∈ ω1〉 be a sequence of pairwise distinct

reals.

Claim 6.3. The model HODs,c contains all reals.

Proof. Suppose towards a contradiction that it does not. Let r ∈ R \HODs,c

be any real. Use a counting argument to find distinct countable ordinals α, β
such that the points 〈r, rα〉, 〈r, rβ〉 ∈ R2 receive the same color in c, say n ∈ ω.
The real r cannot be unique with this property, since in such a case it would be
definable and therefore an element of HODs,c. If r′ is a different real with this
property, then te set {r, r′} × {rα, rβ} is a monochromatic ΓR-hyperedge with
color n, a contradiction.

Now, work in the model HODs,c and argue that the Continuum Hypothesis
holds there as ZFC+countable chromatic number of ΓR implies CH; this will
conclude the proof. This is in fact a known result [?, Theorem 2]; for complete-
ness, let me include it. Work in ZFC, suppose that d : R2 → ω is a ΓR-coloring,
and assume towards a contradiction that the Continuum Hypothesis fails. Let
M be an elementary submodel of cardinality ℵ1 of a large structure contain-
ing the coloring d. Let r0 ∈ R \M be any point. By a counting argument,
there must be a number n ∈ ω and distinct reals s0, s1 ∈ R ∩ M such that
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d(s0, r0) = d(s1, r0) = n. By elementarity of the model M , there has to be
a point r1 ∈ R ∩ M satisfying the latter equation with r0 replaced with r1.
Then the set {s0, s1} × {r0, r1} is a ΓR-hyperedge monochromatic in color n,
contradicting the choice of the coloring d.

For (2), suppose that x ∈ Rω be a point, and for each n ∈ ω let Mnx be
the class of all sets hereditarily ordinally definable from c and x � Mnx. These
models clearly form a sequence decreasing with respect to inclusion. Thus, the
ordinals (ω1)Mnx form a non-increasing sequence, which has to stabilize at some
number m ∈ ω. The same proof in (1) shows that the sets R∩Mnx stabilize at
that same number m ∈ ω. If this stabilized set is uncountable, then there is a
bijection bewteen ω1 and R by (1), and the proof is complete.

Suppose then that for every sequence x ∈ Rω, the sets R ∩Mnx for n ∈ ω
stabilize to some countable set. Then, even the sets [x]E1

∩Mnx stabilize in
some countable set, call it a(x). Note that the set a(x) depends only on the
E1-class of x. Thus, the set

⋃
{a(x) : x ∈ Rω} is a complete countable section

for E1.

Definition 6.4. ΓT is the hypergraph of arity three on R2 consisting of those
sets for which adding a single point results in a ΓR-hyperedge.

Clearly, any ΓT -coloring is a ΓR-coloring; so, it is more difficult to find a ΓT -
coloring. Again, in ZFC, it is a well-known result ??? that existence of countable
ΓT -coloring is equivalent to the Continuum Hypothesis. Thus, in ZFC, hyper-
graphs ΓR and ΓT are conflated in this way, even though the construction of
ΓT -coloring is much more difficult. In ZF, the distinction between the two
hypergraphs becomes immediately apparent:

Theorem 6.5. (ZF) If ΓT has countable chromatic number, then there is a
total countable-to-one map from R to ω1.

In particular, in ZF, if ΓT has countable chromatic number, then every equiva-
lence relation on a Polish space has countable complete section. I do not know
if a Vitali set must exist. However, balanced forcing cannot be applied to obtain
any consistency result in this direction, since countable-to-one maps from R to
ω1 do not exist in balanced extensions of the choiceless Solovay model.

Proof. Let c : R2 → ω be a ΓT coloring. For x ∈ R write Mx for the model of
all sets hereditarily ordinally definable from x and c. Note that c � Mx ∈ Mx

holds. The argument divides into two cases.
Case 1. There is a real x such that R∩Mx is uncountable. In this case, apply
Theorem 6.2(1) to show that there is even a total injection from R to ω1.
Case 2. Case 1 fails. Let π : R→ ω1 be the map defined by π(x) = ωMx

1 . The
case assumption shows that the range of this map is indeed a subset of ω1. We
will show that π is in fact countable-to-one. Suppose towards contradiction that
it is not, and let α ∈ ω1 be an ordinal such that the set {x ∈ R : π(x) = α} is
uncountable. By the case assumption, there have to be points x0, x1 in this set
such that x1 /∈Mx0

. We will reach a contradiction by a split into subcases.
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Case 1a. Suppose first that x0 /∈ Mx1
. Let L0 be the line in R2 consisting of

points whose 0-th coordinate is equal to x0 and let L1 be the line in R2 consisting
of points whose 1-st coordinate is equal to x1. Let n = c(x0, x1). Then 〈x0, x1〉
is not the only point on L0 which gets color n–otherwise x1 would be definable
from x0. Let 〈x0, x2〉 ∈ L0 be a different point which gets color n. By the same
argument, 〈x0, x1〉 is not the only point on L1 which gets color n–otherwise x0
would be definable from x1. Let 〈x3, x1〉 ∈ L1 be a different point which gets
color n. Then {〈x0, x1〉, 〈x0, x2〉, 〈x3, x1〉} is a monochromatic ΓT -hyperedge of
color n. A contradiction.
Case 1b. Assume now that x0 ∈ Mx1

. The set R ∩Mx0
then belongs to Mx1

and must be uncountable there because the two models have the same ω1. By a
counting argument in Mx1 , there must be distinct points y0, y1 ∈ R∩Mx0 such
that 〈y0, x1〉 and 〈y1, x1〉 get the same c-color, say n. Now, x1 cannot be the
only point such that 〈y1, x1〉 gets the color n–otherwise x1 would be definable
from y1 and then also from x0. So, pick a point z ∈ R such that c(y1, z) = n and
note that the set {〈y0, x1〉, 〈y1, x1〉, 〈y1, z〉} is a c-monochromatic ΓT -hyperedge
of color n. This is a final contradiction.
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