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Compact structures

Question

What is the complexity of the topological group isomorphism
relation between second countable t.d.l.c. groups?

t.d.l.c — totally disconnected, locally compact

complexity — Borel reducibility

Outcome of this project:
Obtain upper bounds on complexity for natural classes of
mathematical objects by representing them in compact structures.
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Compact structures

L — a countable, relational language

α(R) — the arity of R

Definition

A (metrizable) compact structure is M = (M, (RM)R∈L) where

M is compact Polish

Each RM ⊆Mα(R) is closed

A compact metric structure is (M,dM, (RM)R∈L)

Definition

A homeomorphic isomorphism is f :M→N where

f : M → N is a homeomorphism

(x1, . . . , xk) ∈ RM ⇐⇒ (fx1, . . . , fxk) ∈ RN
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Compact structures

Q = [0, 1]N — Hilbert cube

K(X) — hyperspace of compact subsets of X

Definition

The space of compact L-structures is

KL = {(M,RM)R∈L | RM ⊆Mα(R)} ⊆ K(Q)×
∏
R∈L

K(Qα(R))

Theorem (R.D. Anderson)

There is a homeomorphic embedding, ι : Q → Q, s.t. for compact
A,B ⊆ ι[Q], any homeo. g : A→ B extends to g′ ∈ Homeo(Q).
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Compact structures

Given compact X,Y ⊆ Q:

X and Y are homeomorphic

⇐⇒ ι[X] and ι[Y ] are homeomorphic

⇐⇒ gι[X] = ι[Y ] for some g ∈ Homeo(Q)

Theorem (Kechris - Solecki)

The relation of homeomorphism between compact metric spaces is
classifiable by a Polish group action (i.e., Homeo(Q) y K(Q))

Any f : Q → Q induces

fn : Qn → Qn

fn∗ : K(Qn)→ K(Qn)
fL : K(Q)×

∏
R∈LK(Qα(R))→ K(Q)×

∏
R∈LK(Qα(R))

In particular, ι and each g ∈ Homeo(Q) induce ιL and gL.
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Compact structures

Properties of ιL and gL:

ιL(M) is homeomorphically isomorphic to M but its domain
is a subset of ι[Q]
Homeo(Q) acts continuously on K(Q)×

∏
R∈LK(Qα(R))

with invariant subspace KL

Proposition (Rosendal - Z.)

For any countable, relational L, the relation of homeomorphic
isomorphism between compact L-structures is classifiable by a
Polish group action (i.e., Homeo(Q) y KL where g ·M = gL(M))
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Using compact structures to classify other structures

Theorem (Rosendal - Z.)

Topological group isomorphism between locally comp. and Roelcke
precompact Polish groups is classifiable by a Polish group action

(G, d) a Polish group, d left-invariant

MultG = {(g, h, k) ∈ G3 | gh = k}
d∗(g, h) = min{d(g, h), 1

1+d(g,1) +
1

1+d(h,1)}

d∧(g, h) = infk∈Gmax{d(g, k), d(k−1, h−1)}

Then:

G locally comp. =⇒ (G, d∗) is one-point compactification

G Roelcke precomp. =⇒ (G, d∧) is Roelcke compactification

Assign G MG = (MG,MultG)
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Using compact structures to classify other structures

MG MH

G G′ H

(G′ ∩H)

ϕ

⊆

⊆
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Using compact structures to classify other structures

Two observations:

By Ferenczi - Louveau - Rosendal, the general relation of
topological group isomorphism between Polish groups is a
complete analytic equivalence relation

The salient properties of MG:

The homeomorphism type of MG is an invariant of the
isomorphism type of G
MG contains G as a comeagre subset
G structure is determined by any comeagre substructure

(e.g., Polish metric spaces have the above—although their
isometry relation has long been known to be classifiable be a
group action by Gao - Kechris results)
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Non-Archimedean Polish groups

Suppose G is locally compact or Roelcke precompact and moreover
non-Archimedean—admits a basis at 1G of open subgroups.

MG is compact, non-empty, perfect, zero-dimensional

By Brouwer’s theorem MG is homeomorphic to 2N

G (2N,MultG)

Group isomorphism is classified by the action
Homeo(2N) y {2N} ×K((2N)3)

Homeo(2N) 6 S∞
Any action of a subgroup of S∞ is classifiable by countable
structures
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Non-Archimedean Polish groups

Theorem (Rosendal - Z., Kechris - Nies - Tent)

Isomorphism between non-Archimedean locally comp. and Roelcke
precomp. Polish groups is classifiable by countable structures

Every countable group is t.d.l.c. so isomorphism of second
countable t.d.l.c. groups is Borel bi-reducible with a complete
relation for S∞ actions (e.g. graph isomorphism)

(Kechris - Nies - Tent) Likewise for non-Archimedean Roelcke
precompact Polish groups
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Other notions of isomorphism

Upper bounds for isomorphism between structures

Homeo. Uniform bi-Lipschitz Isometric

Polish

? complete Σ1
1 3 grp action 2

compact

grp action 1 Kσ 5 smooth 4

1 Rosendal - Z. (Kechris - Solecki)

2 Elliott-Farah-Paulsen-Rosendal-Toms-Törnquist (Gao-Kechris)

3 Ferenczi - Louveau - Rosendal

4 Rosendal - Z. (Gromov)

5 Rosendal - Z. (Rosendal)
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Thank you!
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