ARTICLES & PAPERS
-
-
- Chakraborty, S. and Su, Z. (2023). A Comprehensive Bayesian Framework for Envelope Models. Journal of the American Statistical Association, to appear.
- Su, Z., Li, B. and Cook, R. D. (2023). Envelope Model for Function-on-function Linear Regression. Journal of Computational and Graphical Statistics, to appear.
- Zhao, S., Su, Z. Liu, H., Khoo, C., Garrett, T. J. and Gu, L. (2023). Predictive models built upon annotated and validated intake biomarkers in urine using paired or unpaired analysis helped to classify cranberry juice consumers in a randomized, double-blinded, placebo-controlled, and crossover study. Nutrition Research, 109, 58-70.
- Khare, K. and Su, Z. (2022). Response Variable Selection in Multivariate Linear Regression. Statistica Sinica, to appear.
- Park, Y., Su, Z. and Chung, D. (2022). Envelope-based Partial Partial Least Squares with Application to Cytokine-based Biomarker Analysis for COVID-19. Statistics in Medicine, 41(23), 4578-4592.
- Qiu, Y., Fall, T., Su, Z., Bortolozo, F., Mussoline, W., England, G., Dinkins, D., Morgan, K., Clark, M. and Liu, G. (2022). Effect of Phosphorus Fertilization on Yield of Chipping Potato Grown on High Legacy Phosphorus Soil. Agronomy, 12(4):812. https://doi.org/10.3390/agronomy12040812
- Liu, L., Li, W., Su, Z., Cook, R. D., Vizioli, L. and Yacoub, E. (2022). Efficient Estimation via Envelope Chain in MRI-based Studies. Scandinavian Journal of Statistics, 49(2),481 – 501.
- Li, M., Kong, L. and Su, Z. (2021). Double Fused Lasso Regularized Regression with Both Matrix and Vector Valued Predictors. Electronic Journal of Statistics, 15, 1909-1950.
- Lee, M., Chakraborty, S. and Su, Z. (2021). A Bayesian approach to envelope quantile regression. Statistica Sinica, 32, 2339-2357.
- Ding, S., Su, Z., Zhu, G. and Wang, L. (2021). Envelope Quantile Regression. Statistica Sinica, 31, 79-106.
- Forzani, L. and Su, Z. (2021). Envelopes for Elliptical Multivariate Linear Regression. Statistica Sinica, 31, 301-332.
- Lee, M. and Su, Z. (2020). A Review of Envelope Models. International Statistical Review, 88, 658-676.
- Zhao, S., Liu, H., Su, Z., Khoo, C. and Gu, L. (2020). Identifying Cranberry Juice Consumers with Predictive OPLS-DA Models of Plasma Metabolome and Validation of Cranberry Juice Intake Biomarkers in a Double-Blinded, Randomized, Placebo-controlled, Cross-over Study. Molecular Nutrition & Food Research, Doi: 10.1002/mnfr.201901242.
- Liu, H., Garrett, T., Su, Z., Khoo, C., Zhao, S. and Gu, L. (2020). Modifications of Urinary Metabolome in Young Women after Cranberry Juice Consumption Were Revealed Using UHPLC-Q-Orbitrap-HRMS-Based Metabolomics Approach. Food & Function. Doi: 10.1039/c9fo02266j.
- Chen, T., Su, Z., Yang, Y. and Ding, S. (2020). Efficient estimation in expectile regression using envelope models. Electronic Journal of Statistics, 14(1), 143-173.
- Zhu, G. and Su, Z. (2020). Envelope-based Sparse Partial Least Squares. Annals of Statistics, 48, 161-182.
- Park, Y., Su, Z. and Zhu, H. (2017), Groupwise Envelope Models for Imaging Genetics Analysis. Biometrics, 73, 1243-1253.
- Liu, H., Garrettb, T. J., Su, Z., Khoo, C., and Gu, L. (2017), UHPLC-Q-Orbitrap-HRMS-based Global Metabolomics Reveal Metabolome Modifications in Plasma of Young Women After Cranberry Juice Consumption. Journal of Nutritional Biochemistry, 45, 67-76.
- Su, Z., Zhu, G., Chen, X. and Yang, Y. (2016), Sparse Envelope Model: Efficient Estimation and Response Variable Selection in Multivariate Linear Regression. Biometrika. 103, 579-593.
- Liu, H., Tayyari, F., Edison, A., Su, Z. and Gu, L. (2016), NMR-Based Metabolomics Reveals Urinary Metabolome Modifications in Female Sprague-Dawley Rats by Cranberry Procyanidins. Journal of Nutritional Biochemistry. 34, 136-145.
- Cook, R. D., Forzani, L. and Su, Z. (2016), A Note on Fast Envelope Estimation. Journal of Multivariate Analysis. 150, 42-54.
- Khare, K., Pal, S. and Su, Z. (2017), A Bayesian Approach for Envelope Models. Annals of Statistics. 45, 196-222.
- Cook, R. D. and Su, Z. (2016), Scaled Predictor Envelopes and Partial Least Squares Regression. Technometrics, 58, 155-165.
- Liao, X., Su, Z., Liu. G., Zotarelli, L., Cui, Y. and Snodgrass, C. (2016), Impact of Soil Moisture and Temperature on Potato Production Using Seepage and Center Pivot Irrigation. Agricultural Water Management. 165, 230-236.
- Cook, R. D., Su, Z. and Yang, Y. (2015), envlp: A MATLAB Toolbox for Computing Envelope Estimators in Multivariate Linear Regression. Journal of Statistical Software. Doi: 10.18637/jss.v062.i08.
- Cook, R. D. and Su, Z. (2013), Scaled Envelopes: Scale Invariant and Efficient Estimation in Multivariate Linear Regression. Biometrika. 100, 921-938.
- Cook, R. D., Helland, I. S. and Su, Z. (2013), Envelopes and Partial Least Squares Regression. Journal of the Royal Statistical Society: Series B., 75, 851-877.
- Su, Z. and Cook, R. D. (2013), Estimation of Multivariate Means with Heteroscedastic Error Using Envelope Models. Statistica Sinica, 23, 213-230.
- Su, Z. and Cook, R. D. (2012), Inner Envelopes: Efficient Estimation in Multivariate Linear Regression. Biometrika, 99, 687-702.
- Su, Z. and Cook, R. D. (2011), Partial Envelopes for Efficient Estimation in Multivariate Linear Regression, Biometrika, 98, 133-146.
- Cook, R. D., Li, B., Chiaromonte, F. and Su, Z. (2010), Rejoinder of “Envelope Models for Parsimonious and Efficient Multivariate Linear Regression”, Statistica Sinica, 20, 999-1010.