All publications

List of LIGO collaboration papers: [link]


88. GW190521 as a Highly Eccentric Black Hole Merger
      V. Gayathri, J. Healy, J. Lange, B. O’Brien, M. Szczepanczyk, I. Bartos, M. Campanelli, S. Klimenko, C. Lousto, R. O’Shaughnessy
      arXiv 2009.05461 (2020) [http]

87. Search for radio remnants of nearby off-axis Gamma-Ray Bursts in a sample of Swift/BAT events
      C. Grandorf, J. McCarty, P. Rajkumar, H. Harbin, K.H. Lee, A. Corsi, I. Bartos, Z. Marka, A. Balasubramanian, S. Marka
      arXiv 2008.05330 (2020) [http]

86. Have hierarchical three-body mergers been detected by LIGO/Virgo?
      D. Veske, Z. Marka, A.G. Sullivan, I. Bartos, K.R. Corley, J. Samsing, S. Marka
      MNRAS Lett. 498, L46–L52 (2020) [http]

85. Black Hole Formation in the Lower Mass Gap through Mergers and Accretion in AGN Disks
      Y. Yang, V. Gayathri, I. Bartos, Z. Haiman, M. Safarzadeh, H. Tagawa
      Astrophys. J. Lett. accepted (2020) [http]

84. FIRST J1419+3940 as the First Observed Radio Flare from a Neutron Star Merger
      K.H. Lee, I. Bartos, G.C. Privon, J.C. Rose, P. Torrey
      arXiv 2007.00563 (2020) [http]

83. Recurrent Neutrino Emission from Supermassive Black Hole Mergers
      O. de Bruijn, I. Bartos, P.L. Biermann, J. Becker Tjus
      arXiv 2006.11288 (2020) [http]

82. Can we use Next-Generation Gravitational Wave Detectors for Precision Measurements of Shapiro Delay?
      A.G. Sullivan, D. Veske, Z. Marka, I. Bartos, S. Ballmer, P. Shawhan, S. Marka
      Class. Quantum Grav. (2020) [http]

81. Spin Evolution of Stellar-mass Black Hole Binaries in Active Galactic Nuclei
      H. Tagawa, Z. Haiman, I. Bartos, B. Kocsis
      Astrophys. J 899:26 (2020) [http]

80. IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo’s First Gravitational-Wave Transient Catalog
      IceCube Collaboration
      Astrophys. J. Lett. 898:L10 (2020) [http]

79. Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei
      Y. Yang, I. Bartos*, Z. Haiman, B. Kocsis, S. Márka, H. Tagawa
      Astrophys. J 896:138 (2020) [http]

78. Optimal Gravitational-wave Follow-up Tiling Strategies Using a Genetic Algorithm
      N. Gupte, I. Bartos*
      Phys. Rev. D 101, 123008 (2020) [http]

77. GW170817A as a Hierarchical Black Hole Merger
      V. Gayathri, I. Bartos*, Z. Haiman, S. Klimenko, B. Kocsis, S. Marka, Y. Yang
      Astrophys. J. Lett. 890:L20 (2020) [http]

76. Neutrino emission upper limits with maximum likelihood estimators for joint astrophysical neutrino searches with large sky localizations
      D. Veske, Z. Marka, I. Bartos, S. Marka
      JCAP 05, 016 (2020) [http]

75. Constraining the Fraction of Core-Collapse Supernovae Harboring Choked Jets
      with High-energy Neutrinos

      D. Guetta, R. Rahin, I. Bartos, M. Della Valle
      MNRAS 492, 843–847 (2020) [http]

74. Constraining Black Hole Populations in Globular Clusters using Microlensing: Application to Omega Centauri
      J. Zaris, D. Veske, J. Samsing, Z. Marka, I. Bartos, S. Marka
      Astrophys. J Lett. 894:L9 (2020) [http]

73. Efficient Gravitational-wave Glitch Identification from Environmental Data Through Machine Learning
      R.E. Colgan, K.R. Corley, Y. Lau, I. Bartos, J.N. Wright, Z. Marka, S. Marka
      Phys Rev. D 101, 102003 (2020) [http]

72. How would a nearby kilonova look on camera?
      N. Gupte, I. Bartos*
      Am. J. Phys. 88, 568 (2020) [http]


71. Gravitational-wave follow-up with CTA after the detection of GRBs in the TeV energy domain
      I. Bartos*, K.R. Corley, N. Gupte, N. Ash, Z. Marka, S. Marka
      MNRAS 490, 3476–3482 (2019) [http]

70. High-Energy Multi-Messenger Transient Astrophysics
      K. Murase*, I. Bartos*
      Annu. Rev. Nucl. Part. S. 69:477-506 (2019) [http]

69. Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo
      during their First and Second Observing Runs

      LIGO Scientific Collaboration, Virgo Collaboration, F. Salemi
      Astrophys. J. 883:149 (2019) [http]

68. Ram-pressure Stripping of a Kicked Hill Sphere: Prompt Electromagnetic Emission from
      the Merger of Stellar Mass Black Holes in an AGN Accretion Disk

      B. McKernan*, K.E.S. Ford, I. Bartos, M.J. Graham, W. Lyra, S. Marka, Z. Marka, N.P. Ross, D. Stern, Y. Yang
      Astrophys. J. Lett. 884:L50 (2019) [http]

67. Hierarchical Black Hole Mergers in Active Galactic Nuclei
      Y. Yang, I. Bartos*, V. Gayathri, S. Ford, Z. Haiman, S. Klimenko, B. Kocsis, S. Marka, Z. Marka, B. McKernan, 
      Phys. Rev. Lett. 123, 181101 (2019) [http]
      + Editor’s Suggestion
      + [Featured in Physics]

66. Early Solar System r-process Abundances Limit Collapsar Origin
      I. Bartos*, S. Marka
      Astrophys. J. Lett. 881:L4 (2019) [http]

65. A nearby neutron-star merger explains the actinide abundances in the early Solar System
      I. Bartos*, S. Marka
      Nature 569, 85–88 (2019) [http]

64. AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers
      Y. Yang, Bartos*, Z. Haiman, B. Kocsis, Z. Marka, N.C. Stone, S. Marka
      Astrophys. J. 876:122 (2019) [http]

63. Localization of Binary Black-Hole Mergers with Known Inclination
      K.R. Corley, I. Bartos, L.P. Singer, A.R. Williamson, Z. Haiman, B. Kocsis, S. Nissanke, Z. Marka, S. Marka
      MNRAS 488, 4459-4463 (2019) [http]

62. Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA) with Gravitational-Wave
      and High-Energy Neutrino Candidates

      S. Countryman*, A. Keivani, I. Bartos, Z. Marka, T. Kintscher, R. Corley, E. Blaufuss, C. Finley, S. Marka
      arXiv, 1901.05486 (2019) [http]

61. Search for Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos with
      Advanced LIGO during its first Observing Run, ANTARES and IceCube

      ANTARES, IceCube, LIGO, Virgo Collaborations
      Astrophys. J., 870:134 (2019) [http]
      + IceCube News

60. Radio Forensics Could Unmask Nearby Off-axis Gamma-ray Bursts
      I. Bartos*, K.H. Lee, A. Corsi, Z. Marka, S. Marka
      MNRAS 485, 4150–4159 (2019) [http]

59. Bayesian Multi-Messenger Search Method for Common Sources of Gravitational Waves
      and High-Energy Neutrinos

      I. Bartos*, D. Veske, A. Keivani, Z. Marka, S. Countryman, E. Blaufuss, C. Finley, S. Marka
      Phys. Rev. D 100, 083017 (2019) [http]


58. Multimessenger Implications of AT2018cow: High-Energy Cosmic Ray and Neutrino Emissions
      from Magnetar-Powered Super-Luminous Transients

      K. Fang, B.D. Metzger, K. Murase, I. Bartos, K. Kotera
      Astrophys. J. 878:34 (2018) [http]

57. A gut microbial factor modulates locomotor behavior in Drosophila
      C.E. Schretter, J. Vielmetter, I. Bartos, Z. Marka, S. Marka, S. Argade, S.K. Mazmanian
      Nature 402–40 (2018) [http]
      + Nature News and Views

56. Observational consequences of structured jets from neutron star mergers in the local Universe
      N. Gupte, I. Bartos*
      arXiv, 1808.06238 (2018) [http]

55. Trans-Ejecta High-Energy Neutrino Emission from Binary Neutron Star Mergers
      S.S. Kimura, K. Murase, I. Bartos, K. Ioka, I.S. Heng, P. Meszaros
      Phys. Rev. D, 98, 4 (2018) [http]

54. Infused Ice can Multiply IceCube’s Sensitivity
      I. Bartos*, Z. Marka, S. Marka
      Nature Communications, 9:1236 (2018) [http]

53. Strategies for the Follow-up of Gravitational Wave Transients with the Cherenkov Telescope Array
      I. Bartos*, T. Di Girolamo*, J.R. Gair, M. Hendry, I.S. Heng, T.B. Humensky, S. Marka, Z. Marka, C. Messenger, …
      MNRAS 477, 639–647 (2018) [http]


52. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with
      ANTARES, IceCube, and the Pierre Auger Observatory

      ANTARES, IceCube, Pierre Auger, LIGO Scientific and Virgo Collaborations
      Astrophys. J. Lett. 850:L35 (2017) [http]
      + IceCube News

51. Multimessenger Prospects with Gravitational Waves and Neutrinos after LIGO’s First Discovery
      I. Bartos for the LIGO Scientific Collaboration
      J. Phys.: Conf. Ser. 888, 012001 (2017) [http]

50. Environmental Stress Causes Lethal Neuro-Trauma during Asymptomatic Viral Infections
      J. Chow, Z. Marka, I. Bartos, S. Marka, J.C. Kagan
      Cell Host & Microbe 22, 48-60 (2017) [http]

49. Multimessenger Astronomy
      I. Bartos, M. Kowalski
      ebook, Physics World Discovery (2017) [http]

48. Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012
      with ANTARES and IceCube

      ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration
      Phys. Rev. D 96, 022005 (2017) [http]
      + IceCube News

47. Gravitational-Wave Localization Alone can Probe Origin of Stellar-Mass Black Hole Mergers
      I. Bartos*, Z. Haiman, Z. Marka, B.D. Metzger, N.C. Stone, S. Marka
      Nature Communications 8, 831 (2017) [http]

46. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei
      I. Bartos*, B. Kocsis, Z. Haiman, S. Marka
      Astrophys. J. 835:165 (2017) [http]

45. Prospects of Establishing the Origin of Cosmic Neutrinos using Source Catalogs
      I. Bartos*, M. Ahrens, C. Finley, S. Marka
      Phys. Rev. D 96, 023003 (2017) [http]


44. A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates
      M. Charisi*, I. Bartos, Z. Haiman, A.M. Price-Whelan, M.J. Graham, E.C. Bellm, R.R. Laher and S. Marka
      MNRAS (2016) [http]

43. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube
      Antares Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration
      Phys. Rev. D 93, 122010 (2016) [http]
      + LIGO science summary
      + IceCube News
      + Editor’s Suggestion

42. Detector Optimization Figures-of-merit for IceCube’s High-energy Extension
      I. Bartos
      Astropart. Phys., 75 55-59 (2016) [http]

41. James Webb Space Telescope can Detect Kilonovae in Gravitational Wave Follow-up Search
      I. Bartos*, T.L. Huard, S. Marka
      Astrophys. J., 816, 61 (2016) [http]
      + astrobites
      + AAS Nova Highlights

40. Novae as Tevatrons: Prospects for CTA and IceCube
      B.D. Metzger, D. Caprioli, I. Vurm, A. M. Beloborodov, I. Bartos, A. Vlasov
      MNRAS 457 (2): 1786-1795 (2016) [http]

39. Multi-Messenger Tests for Fast-Spinning Newborn Pulsars Embedded in Stripped-Envelope Supernovae
      K. Kashiyama, K. Murase, I. Bartos, K. Kiuchi, R. Margutti
      Astrophys. J. 818:94 (14pp) (2016) [http]


38. Constraining the Jet Structure of Gamma-Ray Bursts from Viewing Angle Observations
      N. Miller, S. Marka, I. Bartos*
      arXiv:1511.00706 (2015) [http]

37. Spectral Decline of PeV Neutrinos from Starburst Galaxies
      I. Bartos*, S. Marka
      arXiv:1509.00983 (2015) [http]

36. Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational Wave Detection Rates by Exploiting the
      Mass Distribution of Neutron Stars

      I. Bartos*, S. Marka
      PRL 115, 231101 (2015) [http]

35. Quantification of gait parameters in freely walking rodents
      C.S. Mendes, I. Bartos, Z. Marka, T. Akay, S. Marka, and R.S. Mann
      BMC Biology 13:50 (2015) [http]
      + BioMed Central blog network

34. Galaxy Survey On The Fly: Prospects of Rapid Galaxy Cataloging to Aid the Electromagnetic Follow-up of
      Gravitational-wave Observations

      I. Bartos*, A.P.S. Crotts, S. Marka
      Astrophys. J. Lett., 801:L1 (2015) [http]
      + astrobites

33. Multiple periods in the variability of the supermassive black hole binary candidate quasar PG1302-102?
      M. Charisi*, I. Bartos, Z. Haiman, A.M. Price-Whelan, S. Marka
      MNRAS Lett. 454, L21-L25 (2015) [http]

32. Gamma-Ray and Hard X-Ray Emission from Pulsar-Aided Supernovae as a Probe of Particle Acceleration in
      Embryonic Pulsar Wind Nebulae

      K. Murase, K. Kashiyama, K. Kiuchi, I. Bartos
      Astrophys. J., 805, 82 (2015) [http]

31. Catalog of Isolated Emission Episodes in Gamma-ray Bursts from Fermi, Swift and BATSE
      M. Charisi, S. Marka, I. Bartos
      MNRAS 448, 2624-2633 (2015) [http]


30. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica
      IceCube-Gen2 Collaboration
      arXiv:1412.5106 (2014) [http]

29. Kinematic Responses to Changes in Walking Orientation and Gravitational Load in Drosophila melanogaster
      C.S. Mendes, S.V. Rajendren, I. Bartos, S. Marka, R.S. Mann
      PLoS ONE 9(10): e109204 (2014) [http]

28. Can a Single High-energy Neutrino from Gamma-ray Bursts be a Discovery?
      I. Bartos*, S. Marka
      Phys. Rev. D 90, 101301(R) (2014) [http]

27. Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos:
      Results for Initial LIGO-Virgo and IceCube

      IceCube Collaboration, the LIGO Scientific Collaboration and the Virgo Collaboration
      Phys. Rev. D 90, 102002 (2014) [http]
      + LIGO Science Summary
      + IceCube News

26. Cherenkov Telescope Array is Well Suited to Follow Up Gravitational Wave Transients
      I. Bartos* et al.
      MNRAS 443, 738-749 (2014) [http]


25. Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore
      I. Bartos*, A. Beloborodov, K. Hurley, S. Márka
      PRL 110, 241101 (2013) [http]
      +Editor’s Suggestion

24. Gas Cloud G2 can Illuminate the Black Hole Population near the Galactic Center
      I. Bartos*, Z. Haiman, B. Kocsis, S. Márka
      PRL 110, 221102 (2013) [http]
      +Editor’s Suggestion
      +Physics Synopsis
      +BBC + BBC Science Hour
      +NSF Highlights

23. Detecting Long-Duration Narrow-Band Gravitational Wave Transients Associated with Soft Gamma Repeater
      Quasi-Periodic Oscillations

      D. Murphy, M. Tse, P. Raffai, I. Bartos, R. Khan, Z. Márka, L. Matone, K. Redwine, S. Márka
      Phys. Rev. D 87, 103008 (2013) [http]

22. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster
      C.S. Mendes, I. Bartos, T. Akay, S. Márka, R.S. Mann
      eLIFE 2:e00231 (2013) [http]
      +Insight by R.L. Calabrese
      +Spoonful of Medicine (Nature Medicine) by E. Dolgin
      +Recommendation by A. Buschges

21. TOPICAL REVIEW: How Gravitational-wave Observations Can Shape the Gamma-ray Burst Paradigm
      I. Bartos*, P. Brady, S. Márka
      CQG 30 123001 (2013) [http]
      +CQG Highlights of 2013-2014

20. The Astrophysical Multimessenger Observatory Network (AMON)
      M.W.E. Smith et al.
      Astropart. Phys. 45 (2013) 56-70 [http]

19. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos
      S. Ando et al.
      Rev. Mod. Phys. 85, 1401-1420 (2013) [http]


18. Probing the Structure of Jet-Driven Core-Collapse Supernova and Long GRB Progenitors with High Energy Neutrinos
      I. Bartos*, B. Dasgupta, S. Márka
      Phys. Rev. D 86, 083007 (2012) [http]

17. Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves
      and High-energy Neutrinos

      B. Baret, I. Bartos*, B. Bouhou, E. Chassande-Mottin et al.
      Phys. Rev. D 85, 103004 (2012) [http]


16. Multimessenger Sources of Gravitational Waves and High-energy Neutrinos: Science Reach and Analysis Method
      B. Baret, I. Bartos*, B. Bouhou, E. Chassande-Mottin et al.
      Journal of Physics: Conference Series (Amaldi 9 / NRDA 2011) [http]

15. Opportunity to Test non-Newtonian Gravity Using Interferometric Sensors with Dynamic Gravity Field Generators
      P. Raffai, G. Szeifert, L. Matone, Y. Aso, I. Bartos, Z. Márka, F. Ricci, S. Márka
      Phys. Rev. D 84, 082002 (2011) [http]

14. Observational Constraints on Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos
      I. Bartos*, C. Finley, A. Corsi, S. Márka
      Phys. Rev. Lett. 107, 251101 (2011) [http]

13. Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts
      B. Baret, I. Bartos*, B. Bouhou, A. Corsi et al.
      Astropart. Phys., 35 1-7 (2011) [http]


12. The Advanced LIGO Timing System
      I. Bartos*, R. Bork, M. Factourovich, J. Heefner, S. Márka, Z. Márka, Z. Raics, P. Schwinberg and D. Sigg
      CQG 27 084025 (2010) [http]

11. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota
      J. Harms, F. Acernese, F. Barone, I. Bartos et al.
      CQG 27 225011 (2010) [http]


10. Joint Searches Between Gravitational-Wave Interferometers and High-Energy Neutrino Telescopes:
      Science Reach and Analysis Strategies

      V. van Elewyck, S. Ando, Y. Aso, B. Baret, M. Barsuglia, I. Bartos et al.
      International Journal of Modern Physics D, Volume 18, Issue 10, pp. 1655-1659 (2009) [http]


9. Fluctuation scaling in complex systems: Taylor’s law and beyond
      Z. Eisler, I. Bartos, J. Kertész
      Advances in Physics. 57(1):89-142 (2008) [http]


8. Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment
      B. Gyüre, I. Bartos, I.M. Jánosi
      PRE, 76(3):037301-+ (2007) [http]

7. Side pressure anomalies in 2D packings of frictionless spheres
      I. Bartos, I.M. Jánosi
      Granular Matter, 9(1-2):81-86 (2007) [http]


6. Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants
      S. Kertész, Z. Kerényi, Z. Mérai, I. Bartos, T. Pálfy, E. Barta and D. Silhavy,
      Nucl. Acids Res., 34(21):6147-6157 (2006) [http]

5. Nonlinear correlations of daily temperature records over land
      I. Bartos, I.M. Jánosi
      Nonlin. Processes Geophys., 13(5):571-576 (2006) [http]

4. Correlation properties of daily temperature anomalies over land
      A. Király, I. Bartos, I.M. Jánosi
      Tellus Series A, 58:593-600 (2006) [http]

3. Searching for Gravitational Waves (in Hungarian)
      P. Raffai, I. Bartos
      Kozepiskolai Matematikai es Fizikai Lapok (2006)


2. Long term correlations in the fluctuation of meteorological parameters (in Hungarian)
      I.M. Jánosi, I. Bartos, A. Király
      Meteorologiai tudomanyos napok, 31 (2005) [http]

1. Atmospheric response function over land: Strong asymmetries in daily temperature fluctuations
      I. Bartos, I.M. Jánosi
      Geophys. Res. Lett. 32:L23820 (2005) [http]